These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
87 related items for PubMed ID: 2082468
41. Opiate and serotonergic mechanisms of stimulation-produced analgesia within the periaqueductal gray. Nichols DS, Thorn BE, Berntson GG. Brain Res Bull; 1989 Apr; 22(4):717-24. PubMed ID: 2736397 [Abstract] [Full Text] [Related]
42. Ascending fiber projections from the midbrain central gray to the ventromedial hypothalamus in the rat. Akaishi T, Jiang ZY, Sakuma Y. Exp Neurol; 1988 Feb; 99(2):247-58. PubMed ID: 3338520 [Abstract] [Full Text] [Related]
43. [Neuronal and neurochemical mechanisms of hypothalamic inhibition of the pain reflex]. Baklavadzhian OG, Darbinian AG, Taturian IKh, Ipekchian NM. Fiziol Zh SSSR Im I M Sechenova; 1987 Sep; 73(9):1160-9. PubMed ID: 3428432 [Abstract] [Full Text] [Related]
44. Effects of midbrain stimulation and iontophoretic application of serotonin, noradrenaline, morphine and GABA on electrical thresholds of afferent C- and A-fibre terminals in cat spinal cord. Carstens E, Gilly H, Schreiber H, Zimmermann M. Neuroscience; 1987 May; 21(2):395-406. PubMed ID: 3614639 [Abstract] [Full Text] [Related]
45. Enkephalinergic involvement in periaqueductal gray control of hypothalamically elicited predatory attack in the cat. Weiner S, Shaikh MB, Shaikh AB, Siegel A. Physiol Behav; 1991 Jun; 49(6):1099-105. PubMed ID: 1654570 [Abstract] [Full Text] [Related]
46. Periaqueductal gray influence on anteroventral cochlear nucleus unitary activity and naloxone effects. Pedemonte M, Peña JL, Velluti R. Hear Res; 1990 Aug 15; 47(3):219-27. PubMed ID: 2228805 [Abstract] [Full Text] [Related]
47. [The role of midbrain periaqueductal grey in the inhibition of central cardiac ischemia by somatic nerve and its mechanism in rabbits]. Zhang X, Zhang R. Zhen Ci Yan Jiu; 1991 Aug 15; 16(1):5-9. PubMed ID: 1873902 [Abstract] [Full Text] [Related]
48. Electrophysiological effects of lumbar dorsal root stimulation. Myklebust JB, Maiman DJ, Larson SJ, Sances A. Neurosurgery; 1984 Jun 15; 14(6):682-7. PubMed ID: 6087194 [Abstract] [Full Text] [Related]
49. Interactions of isolated dorsal column and ventral spinal ascending volleys on single neurons in the postcruciate cortex (SmI) of the cat. Saadé NE, Jabbur SJ, Banna NR. Brain Res; 1980 Nov 17; 201(2):446-51. PubMed ID: 7417855 [No Abstract] [Full Text] [Related]
50. Fos expression in the midbrain periaqueductal grey after trigeminovascular stimulation. Hoskin KL, Bulmer DC, Lasalandra M, Jonkman A, Goadsby PJ. J Anat; 2001 Jan 17; 198(Pt 1):29-35. PubMed ID: 11215764 [Abstract] [Full Text] [Related]
51. Cerebellar evoked potential elicited by stimulation of C-fiber in saphenous nerve of cat. Wu J, Chen PX. Brain Res; 1990 Jul 02; 522(1):144-6. PubMed ID: 2224508 [Abstract] [Full Text] [Related]
52. Participation of opiate and serotonergic systems in brain conditioning stimulatory inhibition of the potentials evoked by tooth pulp stimulation in the pars caudalis of the trigeminal sensory nucleus of the rat. Inoki R, Oka M, Maeda S, Iwatsubo K. Jpn J Pharmacol; 1986 Sep 02; 42(1):51-61. PubMed ID: 3795618 [Abstract] [Full Text] [Related]
53. Periaqueductal gray control of breathing. Subramanian HH, Holstege G. Adv Exp Med Biol; 2010 Sep 02; 669():353-8. PubMed ID: 20217381 [Abstract] [Full Text] [Related]
54. Peripheral nerve fiber and spinal cord pathway contributions to the somatosensory evoked potential. Simpson RK, Blackburn JG, Martin HF, Katz S. Exp Neurol; 1981 Sep 02; 73(3):700-15. PubMed ID: 6266861 [No Abstract] [Full Text] [Related]
55. The midbrain periaqueductal gray changes the eupneic respiratory rhythm into a breathing pattern necessary for survival of the individual and of the species. Subramanian HH, Holstege G. Prog Brain Res; 2014 Sep 02; 212():351-84. PubMed ID: 25194206 [Abstract] [Full Text] [Related]
56. Effect of stimulation of the locus coeruleus on spontaneous and evoked cortical unit activity. Raevskii VV, Yurkevich SO. Neurosci Behav Physiol; 1981 Sep 02; 11(3):253-5. PubMed ID: 7329538 [No Abstract] [Full Text] [Related]
57. [Influence of stimulating somatosensory area III (SIII) on cortical response to slow pain]. Feng JQ, Chen PX. Zhen Ci Yan Jiu; 1988 Sep 02; 13(1):43-7. PubMed ID: 3143502 [No Abstract] [Full Text] [Related]
58. [Influence of electro-acupuncture of "Zusanli" point on the response of somatosensory cortex to slow pain]. Feng JQ, Chen PX. Zhen Ci Yan Jiu; 1988 Sep 02; 13(4):288-91, 328. PubMed ID: 3151151 [No Abstract] [Full Text] [Related]
59. Two vocalization-related subregions in the midbrain periaqueductal gray of the guinea pig. Kyuhou S, Gemba H. Neuroreport; 1998 May 11; 9(7):1607-10. PubMed ID: 9631474 [Abstract] [Full Text] [Related]
60. Connectivity of the human periventricular-periaqueductal gray region. Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, Johansen-Berg H. J Neurosurg; 2005 Dec 11; 103(6):1030-4. PubMed ID: 16381189 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]