These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Cisar JO, Kolenbrander PE, McIntire FC. Infect Immun; 1979 Jun; 24(3):742-52. PubMed ID: 468376 [Abstract] [Full Text] [Related]
8. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Egland PG, Dû LD, Kolenbrander PE. Infect Immun; 2001 Dec; 69(12):7512-6. PubMed ID: 11705927 [Abstract] [Full Text] [Related]
9. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Clemans DL, Kolenbrander PE, Debabov DV, Zhang Q, Lunsford RD, Sakone H, Whittaker CJ, Heaton MP, Neuhaus FC. Infect Immun; 1999 May; 67(5):2464-74. PubMed ID: 10225909 [Abstract] [Full Text] [Related]
11. Effect of saliva on coaggregation of oral Actinomyces and Streptococcus species. Kolenbrander PE, Phucas CS. Infect Immun; 1984 May; 44(2):228-33. PubMed ID: 6370861 [Abstract] [Full Text] [Related]
12. Coaggregation of oral Bacteroides species with other bacteria: central role in coaggregation bridges and competitions. Kolenbrander PE, Andersen RN, Holdeman LV. Infect Immun; 1985 Jun; 48(3):741-6. PubMed ID: 3888842 [Abstract] [Full Text] [Related]
13. Lactose-sensitive and -insensitive cell surface interactions of oral Streptococcus milleri strains and actinomyces. Eifuku H, Kitada K, Yakushiji T, Inoue M. Infect Immun; 1991 Jan; 59(1):460-3. PubMed ID: 1987061 [Abstract] [Full Text] [Related]
14. Interbacterial Adhesion Networks within Early Oral Biofilms of Single Human Hosts. Palmer RJ, Shah N, Valm A, Paster B, Dewhirst F, Inui T, Cisar JO. Appl Environ Microbiol; 2017 Jun 01; 83(11):. PubMed ID: 28341674 [Abstract] [Full Text] [Related]
15. High-throughput quantitative method for assessing coaggregation among oral bacterial species. Levin-Sparenberg E, Shin JM, Hastings EM, Freeland M, Segaloff H, Rickard AH, Foxman B. Lett Appl Microbiol; 2016 Oct 01; 63(4):274-81. PubMed ID: 27455031 [Abstract] [Full Text] [Related]
18. Coaggregation between Actinomyces viscosus with Streptococcus pyogenes and Streptococcus agalactiae. Chisari G, Gismondo MR. Microbiologica; 1986 Jul 01; 9(3):393-8. PubMed ID: 3528763 [Abstract] [Full Text] [Related]
19. Kinetics of lactose-reversible coadhesion of Actinomyces naeslundii WVU 398A and Streptococcus oralis 34 on the surface of hexadecane droplets. Ellen RP, Veisman H, Buivids IA, Rosenberg M. Oral Microbiol Immunol; 1994 Dec 01; 9(6):364-71. PubMed ID: 7870472 [Abstract] [Full Text] [Related]
20. Coaggregation of black-pigmented Bacteroides species with other oral bacteria. Eke PI, Rotimi VO, Laughon BE. J Med Microbiol; 1989 Jan 01; 28(1):1-4. PubMed ID: 2913312 [Abstract] [Full Text] [Related] Page: [Next] [New Search]