These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


322 related items for PubMed ID: 20830360

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Ultrasensitive cysteine sensing using citrate-capped CdS quantum dots.
    Wang GL, Dong YM, Yang HX, Li ZJ.
    Talanta; 2011 Jan 15; 83(3):943-7. PubMed ID: 21147341
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. A novel rosamine-based fluorescent probe for the rapid and selective detection of cysteine in BSA, water, milk, cabbage, radish, apple, and pear.
    Liu K, Gu H, Sun Y, Xu C, Yang S, Zhu B.
    Food Chem; 2021 Sep 15; 356():129658. PubMed ID: 33838604
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. One- and two-photon turn-on fluorescent probe for cysteine and homocysteine with large emission shift.
    Zhang X, Ren X, Xu QH, Loh KP, Chen ZK.
    Org Lett; 2009 Mar 19; 11(6):1257-60. PubMed ID: 19236043
    [Abstract] [Full Text] [Related]

  • 28. A rhodamine based "turn-on" chemodosimeter for monitoring gold ions in synthetic samples and living cells.
    Emrullahoğlu M, Karakuş E, Üçüncü M.
    Analyst; 2013 Jul 07; 138(13):3638-41. PubMed ID: 23689216
    [Abstract] [Full Text] [Related]

  • 29. Fluorescent coumarin-based probe for cysteine and homocysteine with live cell application.
    Wei LF, Thirumalaivasan N, Liao YC, Wu SP.
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Aug 05; 183():204-208. PubMed ID: 28454072
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Turn-off-and-on: chemosensing ensembles for sensing chloride in water by fluorescence spectroscopy.
    Riis-Johannessen T, Schenk K, Severin K.
    Inorg Chem; 2010 Oct 18; 49(20):9546-53. PubMed ID: 20866035
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. A rhodamine-based "turn-on" fluorescent probe for Fe3+ in aqueous solution.
    Ji S, Meng X, Ye W, Feng Y, Sheng H, Cai Y, Liu J, Zhu X, Guo Q.
    Dalton Trans; 2014 Jan 28; 43(4):1583-8. PubMed ID: 24217856
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. A native-chemical-ligation-mechanism-based ratiometric fluorescent probe for aminothiols.
    Yuan L, Lin W, Xie Y, Zhu S, Zhao S.
    Chemistry; 2012 Nov 05; 18(45):14520-6. PubMed ID: 23008181
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A cysteine-selective fluorescent probe for the cellular detection of cysteine.
    Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, Kim TW, Kang C, Kim JS.
    Biomaterials; 2012 Jan 05; 33(3):945-53. PubMed ID: 22048010
    [Abstract] [Full Text] [Related]

  • 38. Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs.
    Wang F, Guo Z, Li X, Li X, Zhao C.
    Chemistry; 2014 Sep 01; 20(36):11471-8. PubMed ID: 25056113
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. A colorimetric and fluorescent dual probe for specific detection of cysteine based on intramolecular nucleophilic aromatic substitution.
    Ma L, Qian J, Tian H, Lan M, Zhang W.
    Analyst; 2012 Nov 07; 137(21):5046-50. PubMed ID: 22970425
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.