These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


99 related items for PubMed ID: 20831657

  • 1. Signaling pathways of isoproterenol-induced ERK1/2 phosphorylation in primary cultures of astrocytes are concentration-dependent.
    Du T, Li B, Li H, Li M, Hertz L, Peng L.
    J Neurochem; 2010 Nov; 115(4):1007-23. PubMed ID: 20831657
    [Abstract] [Full Text] [Related]

  • 2. Tonic inhibitory role for cAMP in alpha(1a)-adrenergic receptor coupling to extracellular signal-regulated kinases 1/2.
    Jiao X, Gonzalez-Cabrera PJ, Xiao L, Bradley ME, Abel PW, Jeffries WB.
    J Pharmacol Exp Ther; 2002 Oct; 303(1):247-56. PubMed ID: 12235258
    [Abstract] [Full Text] [Related]

  • 3. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E, Sun S, Nan B, McPhaul MJ, Cheskis B, Mancini MA, Marcelli M.
    Cancer Res; 2004 Oct 01; 64(19):7156-68. PubMed ID: 15466214
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. The thromboxane A2 receptor activates mitogen-activated protein kinase via protein kinase C-dependent Gi coupling and Src-dependent phosphorylation of the epidermal growth factor receptor.
    Gao Y, Tang S, Zhou S, Ware JA.
    J Pharmacol Exp Ther; 2001 Feb 01; 296(2):426-33. PubMed ID: 11160627
    [Abstract] [Full Text] [Related]

  • 6. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-beta1-stimulated smooth muscle cells is pp60(c-src)/MEK-dependent.
    Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ.
    J Cell Physiol; 2005 Jul 01; 204(1):236-46. PubMed ID: 15622520
    [Abstract] [Full Text] [Related]

  • 7. Stimulation by vasopressin of ERK phosphorylation and vector-driven water flux in astrocytes is transactivation-dependent.
    Du T, Song D, Li H, Li B, Cai L, Hertz L, Peng L.
    Eur J Pharmacol; 2008 Jun 10; 587(1-3):73-7. PubMed ID: 18486126
    [Abstract] [Full Text] [Related]

  • 8. Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs.
    Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ.
    J Cell Physiol; 2006 Jan 10; 206(1):47-57. PubMed ID: 15920762
    [Abstract] [Full Text] [Related]

  • 9. Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells.
    Gilad LA, Bresler T, Gnainsky J, Smirnoff P, Schwartz B.
    J Endocrinol; 2005 Jun 10; 185(3):577-92. PubMed ID: 15930183
    [Abstract] [Full Text] [Related]

  • 10. Activation of calcium-dependent kinases and epidermal growth factor receptor regulate muscarinic acetylcholine receptor-mediated MAPK/ERK activation in thyroid epithelial cells.
    Montiel M, Quesada J, Jiménez E.
    Cell Signal; 2007 Oct 10; 19(10):2138-46. PubMed ID: 17643958
    [Abstract] [Full Text] [Related]

  • 11. Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression.
    Yang W, Chen Y, Zhang Y, Wang X, Yang N, Zhu D.
    Cancer Res; 2006 Feb 01; 66(3):1320-6. PubMed ID: 16452185
    [Abstract] [Full Text] [Related]

  • 12. The relaxin family peptide receptor 3 activates extracellular signal-regulated kinase 1/2 through a protein kinase C-dependent mechanism.
    van der Westhuizen ET, Werry TD, Sexton PM, Summers RJ.
    Mol Pharmacol; 2007 Jun 01; 71(6):1618-29. PubMed ID: 17351017
    [Abstract] [Full Text] [Related]

  • 13. Modulation of ERK 1/2 and p38 MAPK signaling pathways by ATP in osteoblasts: involvement of mechanical stress-activated calcium influx, PKC and Src activation.
    Katz S, Boland R, Santillán G.
    Int J Biochem Cell Biol; 2006 Jun 01; 38(12):2082-91. PubMed ID: 16893669
    [Abstract] [Full Text] [Related]

  • 14. ERK phosphorylation in intact, adult brain by alpha(2)-adrenergic transactivation of EGF receptors.
    Du T, Li B, Liu S, Zang P, Prevot V, Hertz L, Peng L.
    Neurochem Int; 2009 Dec 01; 55(7):593-600. PubMed ID: 19501623
    [Abstract] [Full Text] [Related]

  • 15. Astrocyte ERK phosphorylation precedes K(+)-induced swelling but follows hypotonicity-induced swelling.
    Cai L, Du T, Song D, Li B, Hertz L, Peng L.
    Neuropathology; 2011 Jun 01; 31(3):250-64. PubMed ID: 21118399
    [Abstract] [Full Text] [Related]

  • 16. β-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gβγ/Erk-dependent pathway.
    Vidal M, Wieland T, Lohse MJ, Lorenz K.
    Cardiovasc Res; 2012 Nov 01; 96(2):255-64. PubMed ID: 22843704
    [Abstract] [Full Text] [Related]

  • 17. Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct.
    Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A.
    Am J Physiol Renal Physiol; 2003 May 01; 284(5):F948-54. PubMed ID: 12676735
    [Abstract] [Full Text] [Related]

  • 18. In brown adipocytes, adrenergically induced β₁-/β₃-(Gs)-, α₂-(Gi)- and α₁-(Gq)-signalling to Erk1/2 activation is not mediated via EGF receptor transactivation.
    Wang Y, Fälting JM, Mattsson CL, Holmström TE, Nedergaard J.
    Exp Cell Res; 2013 Oct 15; 319(17):2718-27. PubMed ID: 23948306
    [Abstract] [Full Text] [Related]

  • 19. Galpha and Gbeta gamma require distinct Src-dependent pathways to activate Rap1 and Ras.
    Schmitt JM, Stork PJ.
    J Biol Chem; 2002 Nov 08; 277(45):43024-32. PubMed ID: 12221082
    [Abstract] [Full Text] [Related]

  • 20. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.
    Li B, Zhang S, Li M, Hertz L, Peng L.
    Neurochem Int; 2010 Nov 08; 57(4):432-9. PubMed ID: 20450948
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.