These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 20836013

  • 21. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae.
    Wightman R, Bell R, Reece RJ.
    Eukaryot Cell; 2008 Dec; 7(12):2061-8. PubMed ID: 18952899
    [Abstract] [Full Text] [Related]

  • 22. Stochastic galactokinase expression underlies GAL gene induction in a GAL3 mutant of Saccharomyces cerevisiae.
    Kar RK, Qureshi MT, DasAdhikari AK, Zahir T, Venkatesh KV, Bhat PJ.
    FEBS J; 2014 Apr; 281(7):1798-817. PubMed ID: 24785355
    [Abstract] [Full Text] [Related]

  • 23. Metabolic control of transcription: paradigms and lessons from Saccharomyces cerevisiae.
    Campbell RN, Leverentz MK, Ryan LA, Reece RJ.
    Biochem J; 2008 Sep 01; 414(2):177-87. PubMed ID: 18687061
    [Abstract] [Full Text] [Related]

  • 24. Characteristics of Saccharomyces cerevisiae gal1 Delta and gal1 Delta hxk2 Delta mutants expressing recombinant proteins from the GAL promoter.
    Kang HA, Kang WK, Go SM, Rezaee A, Krishna SH, Rhee SK, Kim JY.
    Biotechnol Bioeng; 2005 Mar 20; 89(6):619-29. PubMed ID: 15696522
    [Abstract] [Full Text] [Related]

  • 25. Cadmium regulates copper homoeostasis by inhibiting the activity of Mac1, a transcriptional activator of the copper regulon, in Saccharomyces cerevisiae.
    Heo DH, Baek IJ, Kang HJ, Kim JH, Chang M, Jeong MY, Kim TH, Choi ID, Yun CW.
    Biochem J; 2010 Oct 15; 431(2):257-65. PubMed ID: 20670216
    [Abstract] [Full Text] [Related]

  • 26. The galactose regulon of Escherichia coli.
    Weickert MJ, Adhya S.
    Mol Microbiol; 1993 Oct 15; 10(2):245-51. PubMed ID: 7934815
    [Abstract] [Full Text] [Related]

  • 27. Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.
    Avendaño MS, Leidy C, Pedraza JM.
    Nat Commun; 2013 Oct 15; 4():2605. PubMed ID: 24189549
    [Abstract] [Full Text] [Related]

  • 28. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network.
    Bhat PJ, Venkatesh KV.
    FEBS Lett; 2005 Jan 31; 579(3):597-603. PubMed ID: 15670814
    [Abstract] [Full Text] [Related]

  • 29. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex.
    Platt A, Reece RJ.
    EMBO J; 1998 Jul 15; 17(14):4086-91. PubMed ID: 9670023
    [Abstract] [Full Text] [Related]

  • 30. Polygenic evolution of a sugar specialization trade-off in yeast.
    Roop JI, Chang KC, Brem RB.
    Nature; 2016 Feb 18; 530(7590):336-9. PubMed ID: 26863195
    [Abstract] [Full Text] [Related]

  • 31. Harmonious genetic combinations rewire regulatory networks and flip gene essentiality.
    New AM, Lehner B.
    Nat Commun; 2019 Aug 14; 10(1):3657. PubMed ID: 31413260
    [Abstract] [Full Text] [Related]

  • 32. The Ume6 regulon coordinates metabolic and meiotic gene expression in yeast.
    Williams RM, Primig M, Washburn BK, Winzeler EA, Bellis M, Sarrauste de Menthiere C, Davis RW, Esposito RE.
    Proc Natl Acad Sci U S A; 2002 Oct 15; 99(21):13431-6. PubMed ID: 12370439
    [Abstract] [Full Text] [Related]

  • 33. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M, Qiao WB, Khanam N, Wilkins O, Der SD, Lalich JD, Bognar AL.
    Mol Microbiol; 2005 Jul 15; 57(1):53-69. PubMed ID: 15948949
    [Abstract] [Full Text] [Related]

  • 34. Transplantation of the GAL regulon into G-protein signaling circuitry in yeast.
    Ryo S, Ishii J, Iguchi Y, Fukuda N, Kondo A.
    Anal Biochem; 2012 May 01; 424(1):27-31. PubMed ID: 22343189
    [Abstract] [Full Text] [Related]

  • 35. Expression dynamics of a cellular metabolic network.
    Kharchenko P, Church GM, Vitkup D.
    Mol Syst Biol; 2005 May 01; 1():2005.0016. PubMed ID: 16729051
    [Abstract] [Full Text] [Related]

  • 36. GAL promoter-driven heterologous gene expression in Saccharomyces cerevisiae Δ strain at anaerobic alcoholic fermentation.
    Ahn J, Park KM, Lee H, Son YJ, Choi ES.
    FEMS Yeast Res; 2013 Feb 01; 13(1):140-2. PubMed ID: 23131005
    [Abstract] [Full Text] [Related]

  • 37. Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators.
    Gauci VJ, Beckhouse AG, Lyons V, Beh EJ, Rogers PJ, Dawes IW, Higgins VJ.
    FEMS Yeast Res; 2009 Dec 01; 9(8):1187-95. PubMed ID: 19702872
    [Abstract] [Full Text] [Related]

  • 38. Multifunctional genes.
    van de Peppel J, Holstege FC.
    Mol Syst Biol; 2005 Dec 01; 1():2005.0003. PubMed ID: 16729038
    [No Abstract] [Full Text] [Related]

  • 39. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS.
    Biotechnol Bioeng; 2011 Mar 01; 108(3):621-31. PubMed ID: 21246509
    [Abstract] [Full Text] [Related]

  • 40. Self-Amplifying Pulsatile Protein Dynamics without Positive Feedback.
    Martinez-Corral R, Raimundez E, Lin Y, Elowitz MB, Garcia-Ojalvo J.
    Cell Syst; 2018 Oct 24; 7(4):453-462.e1. PubMed ID: 30316816
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.