These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


251 related items for PubMed ID: 20836564

  • 1. Stereo-complex crystallization of poly(lactic acid)s in block-copolymer phase separation.
    Uehara H, Karaki Y, Wada S, Yamanobe T.
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2707-10. PubMed ID: 20836564
    [Abstract] [Full Text] [Related]

  • 2. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H, Tezuka Y.
    Biomacromolecules; 2004 Oct; 5(4):1181-6. PubMed ID: 15244428
    [Abstract] [Full Text] [Related]

  • 3. Preferential Stereocomplex Crystallization in Enantiomeric Blends of Cellulose Acetate-g-Poly(lactic acid)s with Comblike Topology.
    Bao J, Han L, Shan G, Bao Y, Pan P.
    J Phys Chem B; 2015 Oct 01; 119(39):12689-98. PubMed ID: 26352621
    [Abstract] [Full Text] [Related]

  • 4. Enhanced stereocomplex formation of poly(L-lactic acid) and poly(D-lactic acid) in the presence of stereoblock poly(lactic acid).
    Fukushima K, Chang YH, Kimura Y.
    Macromol Biosci; 2007 Jun 07; 7(6):829-35. PubMed ID: 17541929
    [Abstract] [Full Text] [Related]

  • 5. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H.
    Biomaterials; 2003 Feb 07; 24(4):537-47. PubMed ID: 12437948
    [Abstract] [Full Text] [Related]

  • 6. Crystallization-driven formation poly (l-lactic acid)/poly (d-lactic acid)-polyethylene glycol-poly (l-lactic acid) small-sized microsphere structures by solvent-induced self-assembly.
    Wang K, Wang R, Hu K, Ma Z, Zhang C, Sun X.
    Int J Biol Macromol; 2024 Jan 07; 254(Pt 3):127924. PubMed ID: 37944727
    [Abstract] [Full Text] [Related]

  • 7. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P, Han L, Bao J, Xie Q, Shan G, Bao Y.
    J Phys Chem B; 2015 May 28; 119(21):6462-70. PubMed ID: 25940864
    [Abstract] [Full Text] [Related]

  • 8. Preferential formation of stereocomplex crystals in poly(L-lactic acid)/poly(D-lactic acid) blends by a fullerene nucleator.
    Chang WW, Niu J, Peng H, Rong W.
    Int J Biol Macromol; 2023 Dec 31; 253(Pt 5):127230. PubMed ID: 37797850
    [Abstract] [Full Text] [Related]

  • 9. Poly(lactic acid) stereocomplexes: A decade of progress.
    Tsuji H.
    Adv Drug Deliv Rev; 2016 Dec 15; 107():97-135. PubMed ID: 27125192
    [Abstract] [Full Text] [Related]

  • 10. Ab initio elasticity of poly(lactic acid) crystals.
    Lin T, Liu XY, He C.
    J Phys Chem B; 2010 Mar 11; 114(9):3133-9. PubMed ID: 20151705
    [Abstract] [Full Text] [Related]

  • 11. Fabrication of high-performance poly(l-lactic acid)/lignin-graft-poly(d-lactic acid) stereocomplex films.
    Liu R, Dai L, Hu LQ, Zhou WQ, Si CL.
    Mater Sci Eng C Mater Biol Appl; 2017 Nov 01; 80():397-403. PubMed ID: 28866180
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Surface Modification of Poly(l-lactic acid) through Stereocomplexation with Enantiomeric Poly(d-lactic acid) and Its Copolymer.
    Zhu Q, Chang K, Qi L, Li X, Gao W, Gao Q.
    Polymers (Basel); 2021 May 27; 13(11):. PubMed ID: 34072033
    [Abstract] [Full Text] [Related]

  • 14. Electrospinning of poly(lactic acid) stereocomplex nanofibers.
    Tsuji H, Nakano M, Hashimoto M, Takashima K, Katsura S, Mizuno A.
    Biomacromolecules; 2006 Dec 27; 7(12):3316-20. PubMed ID: 17154458
    [Abstract] [Full Text] [Related]

  • 15. Remarkably enhanced stereocomplex crystallization of high-molar-mass enantiomeric polylactide blends by adding double-grafted copolymers.
    Yuan L, Deng S, Wang Y, Xiu H, Zhang Q, Bai H.
    Int J Biol Macromol; 2024 Feb 27; 258(Pt 1):128919. PubMed ID: 38134994
    [Abstract] [Full Text] [Related]

  • 16. Structure Mediation and Properties of Poly(l-lactide)/Poly(d-lactide) Blend Fibers.
    Yang B, Wang R, Ma HL, Li X, Brünig H, Dong Z, Qi Y, Zhang X.
    Polymers (Basel); 2018 Dec 06; 10(12):. PubMed ID: 30961279
    [Abstract] [Full Text] [Related]

  • 17. Crystallization behavior of asymmetric PLLA/PDLA blends.
    Sun J, Yu H, Zhuang X, Chen X, Jing X.
    J Phys Chem B; 2011 Mar 31; 115(12):2864-9. PubMed ID: 21384937
    [Abstract] [Full Text] [Related]

  • 18. Thermal behavior and crystal structure of poly(L-lactic acid) with 1,3:2,4-dibenzylidene-D-sorbitol.
    Lai WC.
    J Phys Chem B; 2011 Sep 29; 115(38):11029-37. PubMed ID: 21838279
    [Abstract] [Full Text] [Related]

  • 19. Nano-ordered surface morphologies by stereocomplexation of the enantiomeric polylactide chains: specific interactions of surface-immobilized poly(D-lactide) and poly(ethylene glycol)-poly(L-lactide) block copolymers.
    Nakajima M, Nakajima H, Fujiwara T, Kimura Y, Sasaki S.
    Langmuir; 2014 Nov 25; 30(46):14030-8. PubMed ID: 25365934
    [Abstract] [Full Text] [Related]

  • 20. Toward exclusive stereocomplex crystallization of high-molecular-weight poly(L-lactic acid)/poly(D-lactic acid) blends with outstanding heat resistance via incorporating selective nucleating agents.
    Wang L, Lu J, Zhang P, Su J, Han J.
    Int J Biol Macromol; 2024 Mar 25; 262(Pt 1):129976. PubMed ID: 38331074
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.