These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 20839830

  • 1. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands.
    Fanfrlík J, Bronowska AK, Rezác J, Prenosil O, Konvalinka J, Hobza P.
    J Phys Chem B; 2010 Oct 07; 114(39):12666-78. PubMed ID: 20839830
    [Abstract] [Full Text] [Related]

  • 2. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors.
    Dobeš P, Fanfrlík J, Rezáč J, Otyepka M, Hobza P.
    J Comput Aided Mol Des; 2011 Mar 07; 25(3):223-35. PubMed ID: 21286784
    [Abstract] [Full Text] [Related]

  • 3. Ligand conformational and solvation/desolvation free energy in protein-ligand complex formation.
    Kolár M, Fanfrlík J, Hobza P.
    J Phys Chem B; 2011 Apr 28; 115(16):4718-24. PubMed ID: 21466174
    [Abstract] [Full Text] [Related]

  • 4. A semiempirical free energy force field with charge-based desolvation.
    Huey R, Morris GM, Olson AJ, Goodsell DS.
    J Comput Chem; 2007 Apr 30; 28(6):1145-52. PubMed ID: 17274016
    [Abstract] [Full Text] [Related]

  • 5. Semiempirical quantum mechanical method PM6-DH2X describes the geometry and energetics of CK2-inhibitor complexes involving halogen bonds well, while the empirical potential fails.
    Dobes P, Rezác J, Fanfrlík J, Otyepka M, Hobza P.
    J Phys Chem B; 2011 Jul 07; 115(26):8581-9. PubMed ID: 21648479
    [Abstract] [Full Text] [Related]

  • 6. AMBER empirical potential describes the geometry and energy of noncovalent halogen interactions better than advanced semiempirical quantum mechanical method PM6-DH2X.
    Ibrahim MA.
    J Phys Chem B; 2012 Mar 22; 116(11):3659-69. PubMed ID: 22393912
    [Abstract] [Full Text] [Related]

  • 7. Theoretical design of a specific DNA-Zinc-finger protein interaction with semi-empirical quantum chemical methods.
    Nagy G, Gyurcsik B, Hoffmann EA, Körtvélyesi T.
    J Mol Graph Model; 2011 Jun 22; 29(7):928-34. PubMed ID: 21470886
    [Abstract] [Full Text] [Related]

  • 8. Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes.
    Raha K, Merz KM.
    J Med Chem; 2005 Jul 14; 48(14):4558-75. PubMed ID: 15999994
    [Abstract] [Full Text] [Related]

  • 9. Accurate prediction of protonation state as a prerequisite for reliable MM-PB(GB)SA binding free energy calculations of HIV-1 protease inhibitors.
    Wittayanarakul K, Hannongbua S, Feig M.
    J Comput Chem; 2008 Apr 15; 29(5):673-85. PubMed ID: 17849388
    [Abstract] [Full Text] [Related]

  • 10. An estimation method of binding free energy in terms of ABEEMσπ/MM and continuum electrostatics fused into LIE method.
    Chen SL, Zhao DX, Yang ZZ.
    J Comput Chem; 2011 Jan 30; 32(2):338-48. PubMed ID: 20662079
    [Abstract] [Full Text] [Related]

  • 11. A statistical rescoring scheme for protein-ligand docking: Consideration of entropic effect.
    Lee J, Seok C.
    Proteins; 2008 Feb 15; 70(3):1074-83. PubMed ID: 18076034
    [Abstract] [Full Text] [Related]

  • 12. Assessment of QM/MM scoring functions for molecular docking to HIV-1 protease.
    Fong P, McNamara JP, Hillier IH, Bryce RA.
    J Chem Inf Model; 2009 Apr 15; 49(4):913-24. PubMed ID: 19309119
    [Abstract] [Full Text] [Related]

  • 13. A semiempirical approach to ligand-binding affinities: dependence on the Hamiltonian and corrections.
    Mikulskis P, Genheden S, Wichmann K, Ryde U.
    J Comput Chem; 2012 May 05; 33(12):1179-89. PubMed ID: 22396176
    [Abstract] [Full Text] [Related]

  • 14. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases.
    Stoica I, Sadiq SK, Coveney PV.
    J Am Chem Soc; 2008 Feb 27; 130(8):2639-48. PubMed ID: 18225901
    [Abstract] [Full Text] [Related]

  • 15. De novo ligand design to an ensemble of protein structures.
    Todorov NP, Buenemann CL, Alberts IL.
    Proteins; 2006 Jul 01; 64(1):43-59. PubMed ID: 16555306
    [Abstract] [Full Text] [Related]

  • 16. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC, Langley DR, Kang J, Huang H, Kulkarni A.
    J Chem Inf Model; 2009 Jul 01; 49(7):1797-809. PubMed ID: 19552372
    [Abstract] [Full Text] [Related]

  • 17. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY, Chu ZT, Tao H, Warshel A.
    Proteins; 2000 Jun 01; 39(4):393-407. PubMed ID: 10813821
    [Abstract] [Full Text] [Related]

  • 18. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    Pérez C, Pastor M, Ortiz AR, Gago F.
    J Med Chem; 1998 Mar 12; 41(6):836-52. PubMed ID: 9526559
    [Abstract] [Full Text] [Related]

  • 19. Rational automatic search method for stable docking models of protein and ligand.
    Mizutani MY, Tomioka N, Itai A.
    J Mol Biol; 1994 Oct 21; 243(2):310-26. PubMed ID: 7932757
    [Abstract] [Full Text] [Related]

  • 20. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.
    Bryce RA.
    Future Med Chem; 2011 Apr 21; 3(6):683-98. PubMed ID: 21554075
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.