These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 20839943

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Rapid differentiation and identification of potential severe strains of Citrus tristeza virus by real-time reverse transcription-polymerase chain reaction assays.
    Yokomi RK, Saponari M, Sieburth PJ.
    Phytopathology; 2010 Apr; 100(4):319-27. PubMed ID: 20205535
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. A multiplex polymerase chain reaction method for reliable, sensitive and simultaneous detection of multiple viruses in citrus trees.
    Roy A, Fayad A, Barthe G, Brlansky RH.
    J Virol Methods; 2005 Oct; 129(1):47-55. PubMed ID: 15951030
    [Abstract] [Full Text] [Related]

  • 8. Genetic Marker Analysis of a Global Collection of Isolates of Citrus tristeza virus: Characterization and Distribution of CTV Genotypes and Association with Symptoms.
    Hilf ME, Mavrodieva VA, Garnsey SM.
    Phytopathology; 2005 Aug; 95(8):909-17. PubMed ID: 18944413
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Genotype classification and molecular evidence for the presence of mixed infections in Indian Citrus tristeza virus isolates.
    Roy A, Brlansky RH.
    Arch Virol; 2004 Oct; 149(10):1911-29. PubMed ID: 15669104
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Validation of high-throughput real time polymerase chain reaction assays for simultaneous detection of invasive citrus pathogens.
    Saponari M, Loconsole G, Liao HH, Jiang B, Savino V, Yokomi RK.
    J Virol Methods; 2013 Nov; 193(2):478-86. PubMed ID: 23891873
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.
    Osman F, Hodzic E, Kwon SJ, Wang J, Vidalakis G.
    J Virol Methods; 2015 Aug; 220():64-75. PubMed ID: 25907469
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Grouping and comparison of Indian citrus tristeza virus isolates based on coat protein gene sequences and restriction analysis patterns.
    Roy A, Ramachandran P, Brlansky RH.
    Arch Virol; 2003 Apr; 148(4):707-22. PubMed ID: 12664295
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: a model for other plant pathogens.
    Vidal E, Yokomi RK, Moreno A, Bertolini E, Cambra M.
    Phytopathology; 2012 Jan; 102(1):114-21. PubMed ID: 21879789
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.