These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 20843092
21. Oxidation of 2-arylindoles for synthesis of 2-arylbenzoxazinones with oxone as the sole oxidant. Lian XL, Lei H, Quan XJ, Ren ZH, Wang YY, Guan ZH. Chem Commun (Camb); 2013 Sep 25; 49(74):8196-8. PubMed ID: 23925205 [Abstract] [Full Text] [Related]
22. Stoichiometric and catalytic oxidations with hypervalent organo-lambda3-iodanes. Ochiai M. Chem Rec; 2007 Sep 25; 7(1):12-23. PubMed ID: 17304588 [Abstract] [Full Text] [Related]
27. Amine-catalyzed epoxidation of alkenes: a new mechanism for the activation of oxone. Armstrong A. Angew Chem Int Ed Engl; 2004 Mar 12; 43(12):1460-2. PubMed ID: 15022213 [No Abstract] [Full Text] [Related]
28. Preparation, X-ray structure, and reactivity of 2-iodylpyridines: recyclable hypervalent iodine(V) reagents. Yoshimura A, Banek CT, Yusubov MS, Nemykin VN, Zhdankin VV. J Org Chem; 2011 May 20; 76(10):3812-9. PubMed ID: 21462949 [Abstract] [Full Text] [Related]
31. Hofmann-type rearrangement of imides by in situ generation of imide-hypervalent iodines(III) from iodoarenes. Moriyama K, Ishida K, Togo H. Org Lett; 2012 Feb 03; 14(3):946-9. PubMed ID: 22273472 [Abstract] [Full Text] [Related]
32. Hypoiodite mediated synthesis of isoxazolines from aldoximes and alkenes using catalytic KI and Oxone as the terminal oxidant. Yoshimura A, Zhu C, Middleton KR, Todora AD, Kastern BJ, Maskaev AV, Zhdankin VV. Chem Commun (Camb); 2013 May 25; 49(42):4800-2. PubMed ID: 23609208 [Abstract] [Full Text] [Related]
34. Oxidative Prins-pinacol tandem process mediated by a hypervalent iodine reagent: scope, limitations, and applications. Beaulieu MA, Guérard KC, Maertens G, Sabot C, Canesi S. J Org Chem; 2011 Nov 18; 76(22):9460-71. PubMed ID: 21988536 [Abstract] [Full Text] [Related]
35. Release of protein N-glycans by effectors of a Hofmann carboxamide rearrangement. Kasim M, Schulz M, Griebel A, Malhotra A, Müller B, von Horsten HH. Front Mol Biosci; 2022 Nov 18; 9():983679. PubMed ID: 36172046 [Abstract] [Full Text] [Related]
36. Facile synthesis of Nalpha-protected-L-alpha,gamma-diaminobutyric acids mediated by polymer-supported hypervalent iodine reagent in water. Yamada K, Urakawa H, Oku H, Katakai R. J Pept Res; 2004 Aug 18; 64(2):43-50. PubMed ID: 15251030 [Abstract] [Full Text] [Related]
37. Hypervalent iodine catalyzed generation of nitrile oxides from oximes and their cycloaddition with alkenes or alkynes. Yoshimura A, Middleton KR, Todora AD, Kastern BJ, Koski SR, Maskaev AV, Zhdankin VV. Org Lett; 2013 Aug 02; 15(15):4010-3. PubMed ID: 23865434 [Abstract] [Full Text] [Related]
38. Alkene diamination using electron-rich amines: hypervalent iodine-promoted inter-/intramolecular C-N bond formation. Hong KB, Johnston JN. Org Lett; 2014 Jul 18; 16(14):3804-7. PubMed ID: 24981419 [Abstract] [Full Text] [Related]
39. o-Iodoxybenzoic acid- and tetraethylammonium bromide-mediated oxidative transformation of primary carboxamides to one-carbon dehomologated nitriles. Bhalerao DS, Mahajan US, Chaudhari KH, Akamanchi KG. J Org Chem; 2007 Jan 19; 72(2):662-5. PubMed ID: 17221993 [Abstract] [Full Text] [Related]
40. Oxone/Co(2+) oxidation as an advanced oxidation process: comparison with traditional Fenton oxidation for treatment of landfill leachate. Sun J, Li X, Feng J, Tian X. Water Res; 2009 Sep 19; 43(17):4363-9. PubMed ID: 19595430 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]