These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


231 related items for PubMed ID: 20848315

  • 1. Biotransport phenomena in freezing mammalian oocytes.
    Yang G, Veres M, Szalai G, Zhang A, Xu LX, He X.
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [Abstract] [Full Text] [Related]

  • 2. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes.
    Trad FS, Toner M, Biggers JD.
    Hum Reprod; 1999 Jun; 14(6):1569-77. PubMed ID: 10357978
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment.
    Yang CY, Chen MC, Lee PT, Lin TT.
    Cryo Letters; 2012 Jun; 33(5):349-62. PubMed ID: 23224368
    [Abstract] [Full Text] [Related]

  • 7. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.
    Mori S, Choi J, Devireddy RV, Bischof JC.
    Cryobiology; 2012 Dec; 65(3):242-55. PubMed ID: 22863747
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M, Eroğlu A, Toner M, Sadler KC.
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes.
    Guenther JF, Seki S, Kleinhans FW, Edashige K, Roberts DM, Mazur P.
    Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effects of hold time after extracellular ice formation on intracellular freezing of mouse oocytes.
    Mazur P, Pinn IL, Seki S, Kleinhans FW, Edashige K.
    Cryobiology; 2005 Oct; 51(2):235-9. PubMed ID: 16126189
    [Abstract] [Full Text] [Related]

  • 18. Cryopreservation of isolated hepatocytes: intracellular ice formation under various chemical and physical conditions.
    Harris CL, Toner M, Hubel A, Cravalho EG, Yarmush ML, Tompkins RG.
    Cryobiology; 1991 Oct; 28(5):436-44. PubMed ID: 1752131
    [Abstract] [Full Text] [Related]

  • 19. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel.
    Hubel A, Toner M, Cravalho EG, Yarmush ML, Tompkins RG.
    Biotechnol Prog; 1991 Oct; 7(6):554-9. PubMed ID: 1367755
    [Abstract] [Full Text] [Related]

  • 20. Performance of a kinetic model for intracellular ice formation based on the extent of supercooling.
    Pitt RE, Chandrasekaran M, Parks JE.
    Cryobiology; 1992 Jun; 29(3):359-73. PubMed ID: 1499321
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.