These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 20855593

  • 1. Autotrophic ammonia oxidation by soil thaumarchaea.
    Zhang LM, Offre PR, He JZ, Verhamme DT, Nicol GW, Prosser JI.
    Proc Natl Acad Sci U S A; 2010 Oct 05; 107(40):17240-5. PubMed ID: 20855593
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.
    Lu L, Jia Z.
    Environ Microbiol; 2013 Jun 05; 15(6):1795-809. PubMed ID: 23298189
    [Abstract] [Full Text] [Related]

  • 4. Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures.
    Wu Y, Ke X, Hernández M, Wang B, Dumont MG, Jia Z, Conrad R.
    Appl Environ Microbiol; 2013 May 05; 79(9):3076-84. PubMed ID: 23455342
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.
    Stopnisek N, Gubry-Rangin C, Höfferle S, Nicol GW, Mandic-Mulec I, Prosser JI.
    Appl Environ Microbiol; 2010 Nov 05; 76(22):7626-34. PubMed ID: 20889787
    [Abstract] [Full Text] [Related]

  • 7. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China.
    Wang S, Wang Y, Feng X, Zhai L, Zhu G.
    Appl Microbiol Biotechnol; 2011 Apr 05; 90(2):779-87. PubMed ID: 21253721
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA.
    Adair KL, Schwartz E.
    Microb Ecol; 2008 Oct 05; 56(3):420-6. PubMed ID: 18204798
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen.
    Levičnik-Höfferle S, Nicol GW, Ausec L, Mandić-Mulec I, Prosser JI.
    FEMS Microbiol Ecol; 2012 Apr 05; 80(1):114-23. PubMed ID: 22150211
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
    Santoro AE, Casciotti KL, Francis CA.
    Environ Microbiol; 2010 Jul 05; 12(7):1989-2006. PubMed ID: 20345944
    [Abstract] [Full Text] [Related]

  • 17. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.
    Tourna M, Freitag TE, Nicol GW, Prosser JI.
    Environ Microbiol; 2008 May 05; 10(5):1357-64. PubMed ID: 18325029
    [Abstract] [Full Text] [Related]

  • 18. Autotrophic growth of nitrifying community in an agricultural soil.
    Xia W, Zhang C, Zeng X, Feng Y, Weng J, Lin X, Zhu J, Xiong Z, Xu J, Cai Z, Jia Z.
    ISME J; 2011 Jul 05; 5(7):1226-36. PubMed ID: 21326337
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.