These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


378 related items for PubMed ID: 20855892

  • 1. Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity.
    Steinberg GR, O'Neill HM, Dzamko NL, Galic S, Naim T, Koopman R, Jørgensen SB, Honeyman J, Hewitt K, Chen ZP, Schertzer JD, Scott JW, Koentgen F, Lynch GS, Watt MJ, van Denderen BJ, Campbell DJ, Kemp BE.
    J Biol Chem; 2010 Nov 26; 285(48):37198-209. PubMed ID: 20855892
    [Abstract] [Full Text] [Related]

  • 2. AMP-activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise.
    O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jørgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR.
    Proc Natl Acad Sci U S A; 2011 Sep 20; 108(38):16092-7. PubMed ID: 21896769
    [Abstract] [Full Text] [Related]

  • 3. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB, Wojtaszewski JF, Viollet B, Andreelli F, Birk JB, Hellsten Y, Schjerling P, Vaulont S, Neufer PD, Richter EA, Pilegaard H.
    FASEB J; 2005 Jul 20; 19(9):1146-8. PubMed ID: 15878932
    [Abstract] [Full Text] [Related]

  • 4. Knockout of the alpha2 but not alpha1 5'-AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle.
    Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF.
    J Biol Chem; 2004 Jan 09; 279(2):1070-9. PubMed ID: 14573616
    [Abstract] [Full Text] [Related]

  • 5. Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise.
    Hingst JR, Kjøbsted R, Birk JB, Jørgensen NO, Larsen MR, Kido K, Larsen JK, Kjeldsen SAS, Fentz J, Frøsig C, Holm S, Fritzen AM, Dohlmann TL, Larsen S, Foretz M, Viollet B, Schjerling P, Overby P, Halling JF, Pilegaard H, Hellsten Y, Wojtaszewski JFP.
    Mol Metab; 2020 Oct 09; 40():101028. PubMed ID: 32504885
    [Abstract] [Full Text] [Related]

  • 6. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle.
    Nakano M, Hamada T, Hayashi T, Yonemitsu S, Miyamoto L, Toyoda T, Tanaka S, Masuzaki H, Ebihara K, Ogawa Y, Hosoda K, Inoue G, Yoshimasa Y, Otaka A, Fushiki T, Nakao K.
    Metabolism; 2006 Mar 09; 55(3):300-8. PubMed ID: 16483872
    [Abstract] [Full Text] [Related]

  • 7. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise.
    Sylow L, Møller LLV, Kleinert M, D'Hulst G, De Groote E, Schjerling P, Steinberg GR, Jensen TE, Richter EA.
    Diabetes; 2017 Jun 09; 66(6):1548-1559. PubMed ID: 28389470
    [Abstract] [Full Text] [Related]

  • 8. Adenosine monophosphate-activated protein kinase is elevated in human cachectic muscle and prevents cancer-induced metabolic dysfunction in mice.
    Raun SH, Ali MS, Han X, Henríquez-Olguín C, Pham TCP, Meneses-Valdés R, Knudsen JR, Willemsen ACH, Larsen S, Jensen TE, Langen R, Sylow L.
    J Cachexia Sarcopenia Muscle; 2023 Aug 09; 14(4):1631-1647. PubMed ID: 37194385
    [Abstract] [Full Text] [Related]

  • 9. Compound- and fiber type-selective requirement of AMPKγ3 for insulin-independent glucose uptake in skeletal muscle.
    Rhein P, Desjardins EM, Rong P, Ahwazi D, Bonhoure N, Stolte J, Santos MD, Ovens AJ, Ehrlich AM, Sanchez Garcia JL, Ouyang Q, Yabut JM, Kjolby M, Membrez M, Jessen N, Oakhill JS, Treebak JT, Maire P, Scott JW, Sanders MJ, Descombes P, Chen S, Steinberg GR, Sakamoto K.
    Mol Metab; 2021 Sep 09; 51():101228. PubMed ID: 33798773
    [Abstract] [Full Text] [Related]

  • 10. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise.
    Miura S, Kai Y, Kamei Y, Bruce CR, Kubota N, Febbraio MA, Kadowaki T, Ezaki O.
    Am J Physiol Endocrinol Metab; 2009 Jan 09; 296(1):E47-55. PubMed ID: 18940938
    [Abstract] [Full Text] [Related]

  • 11. Role of AMPKalpha2 in basal, training-, and AICAR-induced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle.
    Jørgensen SB, Treebak JT, Viollet B, Schjerling P, Vaulont S, Wojtaszewski JF, Richter EA.
    Am J Physiol Endocrinol Metab; 2007 Jan 09; 292(1):E331-9. PubMed ID: 16954334
    [Abstract] [Full Text] [Related]

  • 12. Genetic loss of AMPK-glycogen binding destabilises AMPK and disrupts metabolism.
    Hoffman NJ, Whitfield J, Janzen NR, Belhaj MR, Galic S, Murray-Segal L, Smiles WJ, Ling NXY, Dite TA, Scott JW, Oakhill JS, Brink R, Kemp BE, Hawley JA.
    Mol Metab; 2020 Nov 09; 41():101048. PubMed ID: 32610071
    [Abstract] [Full Text] [Related]

  • 13. AXIN1 knockout does not alter AMPK/mTORC1 regulation and glucose metabolism in mouse skeletal muscle.
    Li J, Knudsen JR, Henriquez-Olguin C, Li Z, Birk JB, Persson KW, Hellsten Y, Offergeld A, Jarassier W, Le Grand F, Schjerling P, Wojtaszewski JFP, Jensen TE.
    J Physiol; 2021 Jun 09; 599(12):3081-3100. PubMed ID: 33913171
    [Abstract] [Full Text] [Related]

  • 14. AMPK-independent pathways regulate skeletal muscle fatty acid oxidation.
    Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jørgensen SB, Lynch GS, Kemp BE, Steinberg GR.
    J Physiol; 2008 Dec 01; 586(23):5819-31. PubMed ID: 18845612
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.