These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
670 related items for PubMed ID: 20864207
1. Regional transport modelling for nitrate trend assessment and forecasting in a chalk aquifer. Orban P, Brouyère S, Batlle-Aguilar J, Couturier J, Goderniaux P, Leroy M, Maloszewski P, Dassargues A. J Contam Hydrol; 2010 Oct 21; 118(1-2):79-93. PubMed ID: 20864207 [Abstract] [Full Text] [Related]
2. Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain. Ledoux E, Gomez E, Monget JM, Viavattene C, Viennot P, Ducharne A, Benoit M, Mignolet C, Schott C, Mary B. Sci Total Environ; 2007 Apr 01; 375(1-3):33-47. PubMed ID: 17275068 [Abstract] [Full Text] [Related]
3. Nitrate concentrations in river waters of the upper Thames and its tributaries. Neal C, Jarvie HP, Neal M, Hill L, Wickham H. Sci Total Environ; 2006 Jul 15; 365(1-3):15-32. PubMed ID: 16618496 [Abstract] [Full Text] [Related]
4. Modelling the migration of contaminants through variably saturated dual-porosity, dual-permeability chalk. Brouyère S. J Contam Hydrol; 2006 Jan 10; 82(3-4):195-219. PubMed ID: 16303208 [Abstract] [Full Text] [Related]
5. Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers? Smith JT, Clarke RT, Bowes MJ. Sci Total Environ; 2010 Sep 15; 408(20):4722-32. PubMed ID: 20673960 [Abstract] [Full Text] [Related]
6. Vulnerability and risk evaluation of agricultural nitrogen pollution for Hungary's main aquifer using DRASTIC and GLEAMS models. Leone A, Ripa MN, Uricchio V, Deák J, Vargay Z. J Environ Manage; 2009 Jul 15; 90(10):2969-78. PubMed ID: 18054423 [Abstract] [Full Text] [Related]
7. Is it worth protecting groundwater from diffuse pollution with agri-environmental schemes? A hydro-economic modeling approach. Hérivaux C, Orban P, Brouyère S. J Environ Manage; 2013 Oct 15; 128():62-74. PubMed ID: 23722175 [Abstract] [Full Text] [Related]
8. Reactive transport modelling of groundwater chemistry in a chalk aquifer at the watershed scale. Mangeret A, De Windt L, Crançon P. J Contam Hydrol; 2012 Sep 15; 138-139():60-74. PubMed ID: 22797192 [Abstract] [Full Text] [Related]
9. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands). Rozemeijer JC, Broers HP. Environ Pollut; 2007 Aug 15; 148(3):695-706. PubMed ID: 17418466 [Abstract] [Full Text] [Related]
10. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation. Brouyère S, Dassargues A, Hallet V. J Contam Hydrol; 2004 Aug 15; 72(1-4):135-64. PubMed ID: 15240170 [Abstract] [Full Text] [Related]
11. Historical reconstruction of wastewater and land use impacts to groundwater used for public drinking water: exposure assessment using chemical data and GIS. Swartz CH, Rudel RA, Kachajian JR, Brody JG. J Expo Anal Environ Epidemiol; 2003 Sep 15; 13(5):403-16. PubMed ID: 12973368 [Abstract] [Full Text] [Related]
12. Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers. Koh DC, Mayer B, Lee KS, Ko KS. J Contam Hydrol; 2010 Oct 21; 118(1-2):62-78. PubMed ID: 20828864 [Abstract] [Full Text] [Related]
13. Stochastic hydro-economic model for groundwater quality management using Bayesian networks. Molina JL, Pulido-Velázquez M, Llopis-Albert C, Peña-Haro S. Water Sci Technol; 2013 Oct 21; 67(3):579-86. PubMed ID: 23202563 [Abstract] [Full Text] [Related]
15. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Narula KK, Gosain AK. Sci Total Environ; 2013 Dec 01; 468-469 Suppl():S102-16. PubMed ID: 23452999 [Abstract] [Full Text] [Related]
16. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin: chemical and microbiological indicators. Katz BG, Griffin DW, Davis JH. Sci Total Environ; 2009 Apr 01; 407(8):2872-86. PubMed ID: 19232432 [Abstract] [Full Text] [Related]
17. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations. Fretwell BA, Burgess WG, Barker JA, Jefferies NL. J Contam Hydrol; 2005 Jun 01; 78(1-2):27-52. PubMed ID: 15949606 [Abstract] [Full Text] [Related]
18. An integrated pressure and pathway approach to the spatial analysis of groundwater nitrate: a case study from the southeast of Ireland. Tedd KM, Coxon CE, Misstear BD, Daly D, Craig M, Mannix A, Williams NH. Sci Total Environ; 2014 Apr 01; 476-477():460-76. PubMed ID: 24486501 [Abstract] [Full Text] [Related]
19. Assessing the impact of changes in landuse and management practices on the diffuse pollution and retention of nitrate in a riparian floodplain. Krause S, Jacobs J, Voss A, Bronstert A, Zehe E. Sci Total Environ; 2008 Jan 15; 389(1):149-64. PubMed ID: 17915291 [Abstract] [Full Text] [Related]
20. Spatial and statistical assessment of factors influencing nitrate contamination in groundwater. Masetti M, Poli S, Sterlacchini S, Beretta GP, Facchi A. J Environ Manage; 2008 Jan 15; 86(1):272-81. PubMed ID: 17296259 [Abstract] [Full Text] [Related] Page: [Next] [New Search]