These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
533 related items for PubMed ID: 20866808
1. Suspensions of repulsive colloidal particles near the glass transition: Time and frequency domain descriptions. Roldán-Vargas S, de Vicente J, Barnadas-Rodríguez R, Quesada-Pérez M, Estelrich J, Callejas-Fernández J. Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021406. PubMed ID: 20866808 [Abstract] [Full Text] [Related]
9. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology. Gnann MV, Voigtmann T. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416 [Abstract] [Full Text] [Related]
10. Colloidal lattice shearing and rupturing with a driven line of particles. Libál A, Csíki BM, Reichhardt CJ, Reichhardt C. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022308. PubMed ID: 23496517 [Abstract] [Full Text] [Related]
11. Glass dynamics at high strain rates. Langer JS, Egami T. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011502. PubMed ID: 23005420 [Abstract] [Full Text] [Related]
12. Glasslike arrest in spinodal decomposition as a route to colloidal gelation. Manley S, Wyss HM, Miyazaki K, Conrad JC, Trappe V, Kaufman LJ, Reichman DR, Weitz DA. Phys Rev Lett; 2005 Dec 02; 95(23):238302. PubMed ID: 16384352 [Abstract] [Full Text] [Related]
13. Glassy arrest in colloidal fluids with size polydispersity. Braun FN, Bergenholtz J. J Phys Chem B; 2007 Oct 11; 111(40):11626-8. PubMed ID: 17880201 [Abstract] [Full Text] [Related]
15. Glass transition in driven granular fluids: a mode-coupling approach. Kranz WT, Sperl M, Zippelius A. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb 11; 87(2):022207. PubMed ID: 23496505 [Abstract] [Full Text] [Related]
16. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order. Kawasaki T, Tanaka H. J Phys Condens Matter; 2011 May 18; 23(19):194121. PubMed ID: 21525551 [Abstract] [Full Text] [Related]
17. Dynamic thermal expansivity of liquids near the glass transition. Niss K, Gundermann D, Christensen T, Dyre JC. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr 18; 85(4 Pt 1):041501. PubMed ID: 22680477 [Abstract] [Full Text] [Related]
18. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass. Ghosh A, Chikkadi V, Schall P, Bonn D. Phys Rev Lett; 2011 Oct 28; 107(18):188303. PubMed ID: 22107681 [Abstract] [Full Text] [Related]
19. Heterogeneous relaxation dynamics in amorphous materials under cyclic loading. Priezjev NV. Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May 28; 87(5):052302. PubMed ID: 23767535 [Abstract] [Full Text] [Related]
20. How coupled elementary units determine the dynamics of macroscopic glass-forming systems. Rehwald C, Heuer A. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov 28; 86(5 Pt 1):051504. PubMed ID: 23214786 [Abstract] [Full Text] [Related] Page: [Next] [New Search]