These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
119 related items for PubMed ID: 20866846
41. A new framework for identifying combinatorial regulation of transcription factors: a case study of the yeast cell cycle. Wang J. J Biomed Inform; 2007 Dec; 40(6):707-25. PubMed ID: 17418646 [Abstract] [Full Text] [Related]
42. Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Martin S, Zhang Z, Martino A, Faulon JL. Bioinformatics; 2007 Apr 01; 23(7):866-74. PubMed ID: 17267426 [Abstract] [Full Text] [Related]
43. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. Braunewell S, Bornholdt S. J Theor Biol; 2007 Apr 21; 245(4):638-43. PubMed ID: 17204290 [Abstract] [Full Text] [Related]
44. Deconstruction and dynamical robustness of regulatory networks: application to the yeast cell cycle networks. Goles E, Montalva M, Ruz GA. Bull Math Biol; 2013 Jun 21; 75(6):939-66. PubMed ID: 23188157 [Abstract] [Full Text] [Related]
45. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Stegmeier F, Amon A. Annu Rev Genet; 2004 Jun 21; 38():203-32. PubMed ID: 15568976 [Abstract] [Full Text] [Related]
46. Statistical inference of transcriptional module-based gene networks from time course gene expression profiles by using state space models. Hirose O, Yoshida R, Imoto S, Yamaguchi R, Higuchi T, Charnock-Jones DS, Print C, Miyano S. Bioinformatics; 2008 Apr 01; 24(7):932-42. PubMed ID: 18292116 [Abstract] [Full Text] [Related]
47. Modeling interactome: scale-free or geometric? Przulj N, Corneil DG, Jurisica I. Bioinformatics; 2004 Dec 12; 20(18):3508-15. PubMed ID: 15284103 [Abstract] [Full Text] [Related]
48. Mean-field Boolean network model of a signal transduction network. Kochi N, Matache MT. Biosystems; 2012 Dec 12; 108(1-3):14-27. PubMed ID: 22212351 [Abstract] [Full Text] [Related]
49. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle. Gibbs DL, Shmulevich I. PLoS Comput Biol; 2017 Jun 12; 13(6):e1005591. PubMed ID: 28628618 [Abstract] [Full Text] [Related]
50. Random phenotypic variation of yeast (Saccharomyces cerevisiae) single-gene knockouts fits a double pareto-lognormal distribution. Graham JH, Robb DT, Poe AR. PLoS One; 2012 Jun 12; 7(11):e48964. PubMed ID: 23139826 [Abstract] [Full Text] [Related]
51. Binary threshold networks as a natural null model for biological networks. Rybarsch M, Bornholdt S. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug 12; 86(2 Pt 2):026114. PubMed ID: 23005832 [Abstract] [Full Text] [Related]
52. Mutual information in random Boolean models of regulatory networks. Ribeiro AS, Kauffman SA, Lloyd-Price J, Samuelsson B, Socolar JE. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan 12; 77(1 Pt 1):011901. PubMed ID: 18351870 [Abstract] [Full Text] [Related]
53. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Fauré A, Naldi A, Chaouiya C, Thieffry D. Bioinformatics; 2006 Jul 15; 22(14):e124-31. PubMed ID: 16873462 [Abstract] [Full Text] [Related]
54. Stability of functions in Boolean models of gene regulatory networks. Rämö P, Kesseli J, Yli-Harja O. Chaos; 2005 Sep 15; 15(3):34101. PubMed ID: 16252995 [Abstract] [Full Text] [Related]
55. G1 and G2 arrests in response to osmotic shock are robust properties of the budding yeast cell cycle. Waltermann C, Floettmann M, Klipp E. Genome Inform; 2010 Sep 15; 24():204-17. PubMed ID: 22081601 [Abstract] [Full Text] [Related]
56. An Application of Invertibility of Boolean Control Networks to the Control of the Mammalian Cell Cycle. Zhang K, Zhang L, Mou S. IEEE/ACM Trans Comput Biol Bioinform; 2017 Sep 15; 14(1):225-229. PubMed ID: 26761860 [Abstract] [Full Text] [Related]