These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
176 related items for PubMed ID: 20884446
1. Molybdenum hydroxylase super family shows circadian activity fluctuation in mice liver: emphasis on aldehyde hydroxylase and xanthine oxidase. Al-Abbasi FA, Al-Sieni AI. Pak J Pharm Sci; 2010 Oct; 23(4):359-62. PubMed ID: 20884446 [Abstract] [Full Text] [Related]
2. Contribution of aldehyde oxidase, xanthine oxidase, and aldehyde dehydrogenase on the oxidation of aromatic aldehydes. Panoutsopoulos GI, Kouretas D, Beedham C. Chem Res Toxicol; 2004 Oct; 17(10):1368-76. PubMed ID: 15487898 [Abstract] [Full Text] [Related]
3. Diurnal variation and melatonin induction of hepatic molybdenum hydroxylase activity in the guinea-pig. Beedham C, Padwick DJ, al-Tayib Y, Smith JA. Biochem Pharmacol; 1989 May 01; 38(9):1459-64. PubMed ID: 2719720 [Abstract] [Full Text] [Related]
4. Use of density functional calculations to predict the regioselectivity of drugs and molecules metabolized by aldehyde oxidase. Torres RA, Korzekwa KR, McMasters DR, Fandozzi CM, Jones JP. J Med Chem; 2007 Sep 20; 50(19):4642-7. PubMed ID: 17718551 [Abstract] [Full Text] [Related]
5. A novel ring oxidation of 4- or 5-substituted 2H-oxazole to corresponding 2-oxazolone catalyzed by cytosolic aldehyde oxidase. Arora VK, Philip T, Huang S, Shu YZ. Drug Metab Dispos; 2012 Sep 20; 40(9):1668-76. PubMed ID: 22621803 [Abstract] [Full Text] [Related]
6. Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Ueda O, Sugihara K, Ohta S, Kitamura S. Drug Metab Dispos; 2005 Sep 20; 33(9):1312-8. PubMed ID: 15932950 [Abstract] [Full Text] [Related]
7. Metabolism of isovanillin by aldehyde oxidase, xanthine oxidase, aldehyde dehydrogenase and liver slices. Panoutsopoulos GI, Beedham C. Pharmacology; 2005 Mar 20; 73(4):199-208. PubMed ID: 15627845 [Abstract] [Full Text] [Related]
10. Potent inhibition of human liver aldehyde oxidase by raloxifene. Obach RS. Drug Metab Dispos; 2004 Jan 20; 32(1):89-97. PubMed ID: 14709625 [Abstract] [Full Text] [Related]
11. Substrate specificity of human liver aldehyde oxidase toward substituted quinazolines and phthalazines: a comparison with hepatic enzyme from guinea pig, rabbit, and baboon. Beedham C, Critchley DJ, Rance DJ. Arch Biochem Biophys; 1995 Jun 01; 319(2):481-90. PubMed ID: 7786031 [Abstract] [Full Text] [Related]
12. Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T. J Biochem; 2007 Apr 01; 141(4):513-24. PubMed ID: 17301077 [Abstract] [Full Text] [Related]
13. 1-substituted phthalazines as probes of the substrate-binding site of mammalian molybdenum hydroxylases. Beedham C, Bruce SE, Critchley DJ, Rance DJ. Biochem Pharmacol; 1990 Apr 01; 39(7):1213-21. PubMed ID: 2322306 [Abstract] [Full Text] [Related]
15. Reaction of 1-amino- and 1-chlorophthalazine with mammalian molybdenum hydroxylases in vitro. Johnson C, Beedham C, Stell JG. Xenobiotica; 1987 Jan 01; 17(1):17-24. PubMed ID: 3825175 [Abstract] [Full Text] [Related]
17. NADH oxidase activity of rat liver xanthine dehydrogenase and xanthine oxidase-contribution for damage mechanisms. Maia L, Vala A, Mira L. Free Radic Res; 2005 Sep 01; 39(9):979-86. PubMed ID: 16087479 [Abstract] [Full Text] [Related]
18. Xanthine oxidase and aldehyde oxidase: a simple procedure for the simultaneous purification from rat liver. Maia L, Mira L. Arch Biochem Biophys; 2002 Apr 01; 400(1):48-53. PubMed ID: 11913970 [Abstract] [Full Text] [Related]