These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


518 related items for PubMed ID: 208845

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Dephosphorylation of skeletal muscle phosphorylase, glycogen synthase, and phosphorylase kinase beta-subunit by a Mn2+-activated protein phosphatase.
    Brautigan DL, Khatra BS, Soderling TR, Fischer EH.
    Arch Biochem Biophys; 1982 Nov; 219(1):228-35. PubMed ID: 6295283
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Dephosphorylation of rabbit skeletal muscle phosphorylase kinase. Evidence against the operation of the "second-site phosphorylation" mechanism of regulation.
    Ganapathi MK, Silberman SR, Paris H, Lee EY.
    J Biol Chem; 1981 Apr 10; 256(7):3213-7. PubMed ID: 6259153
    [Abstract] [Full Text] [Related]

  • 8. Regulation of protein phosphatase-1G from rabbit skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme.
    Hubbard MJ, Cohen P.
    Eur J Biochem; 1989 Dec 22; 186(3):701-9. PubMed ID: 2558013
    [Abstract] [Full Text] [Related]

  • 9. Comparison of the substrate specificities of protein phosphatases involved in the regulation of glycogen metabolism in rabbit skeletal muscle.
    Antoniw JF, Nimmo HG, Yeaman SJ, Cohen P.
    Biochem J; 1977 Feb 15; 162(2):423-33. PubMed ID: 192224
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle.
    Huang FL, Glinsmann WH.
    Eur J Biochem; 1976 Nov 15; 70(2):419-26. PubMed ID: 188646
    [Abstract] [Full Text] [Related]

  • 12. The control of phosphorylase kinase phosphatase activity by polycations and the deinhibitor protein.
    Goris J, Walsh DA, Merlevede W.
    Biochem Biophys Res Commun; 1984 Nov 30; 125(1):293-8. PubMed ID: 6095839
    [Abstract] [Full Text] [Related]

  • 13. Comparison of enzyme activities on glycogen metabolism in rabbit slow and fast muscles.
    Tsutou A, Nakamura S, Negami A, Nakaza T, Kobayashi T, Mizuta K, Hashimoto E, Yamamura H.
    Comp Biochem Physiol B; 1985 Nov 30; 81(3):641-5. PubMed ID: 2992876
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Thiophosphate-activated phosphorylase kinase as a probe in the regulation of phosphorylase phosphatase.
    Gergely P, Vereb G, Bot G.
    Biochim Biophys Acta; 1976 May 13; 429(3):809-16. PubMed ID: 178374
    [Abstract] [Full Text] [Related]

  • 18. The hormonal control of glycogen metabolism. Phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline.
    Foulkes JG, Cohen P.
    Eur J Biochem; 1979 Jun 13; 97(1):251-6. PubMed ID: 225171
    [Abstract] [Full Text] [Related]

  • 19. The protein phosphatases involved in cellular regulation. Influence of polyamines on the activities of protein phosphatase-1 and protein phosphatase-2A.
    Tung HY, Pelech S, Fisher MJ, Pogson CI, Cohen P.
    Eur J Biochem; 1985 Jun 03; 149(2):305-13. PubMed ID: 2986974
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.