These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


158 related items for PubMed ID: 20888904

  • 1. Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes.
    Aas V, Hessvik NP, Wettergreen M, Hvammen AW, Hallén S, Thoresen GH, Rustan AC.
    Biochim Biophys Acta; 2011 Jan; 1812(1):94-105. PubMed ID: 20888904
    [Abstract] [Full Text] [Related]

  • 2. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.
    Feng YZ, Nikolić N, Bakke SS, Boekschoten MV, Kersten S, Kase ET, Rustan AC, Thoresen GH.
    Arch Physiol Biochem; 2014 Feb; 120(1):12-21. PubMed ID: 23991827
    [Abstract] [Full Text] [Related]

  • 3. Remodeling of oxidative energy metabolism by galactose improves glucose handling and metabolic switching in human skeletal muscle cells.
    Kase ET, Nikolić N, Bakke SS, Bogen KK, Aas V, Thoresen GH, Rustan AC.
    PLoS One; 2013 Feb; 8(4):e59972. PubMed ID: 23560061
    [Abstract] [Full Text] [Related]

  • 4. Oxidation of intramyocellular lipids is dependent on mitochondrial function and the availability of extracellular fatty acids.
    Corpeleijn E, Hessvik NP, Bakke SS, Levin K, Blaak EE, Thoresen GH, Gaster M, Rustan AC.
    Am J Physiol Endocrinol Metab; 2010 Jul; 299(1):E14-22. PubMed ID: 20442319
    [Abstract] [Full Text] [Related]

  • 5. Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes.
    Gaster M, Rustan AC, Beck-Nielsen H.
    Diabetes; 2005 Mar; 54(3):648-56. PubMed ID: 15734839
    [Abstract] [Full Text] [Related]

  • 6. Metabolic switching of human myotubes is improved by n-3 fatty acids.
    Hessvik NP, Bakke SS, Fredriksson K, Boekschoten MV, Fjørkenstad A, Koster G, Hesselink MK, Kersten S, Kase ET, Rustan AC, Thoresen GH.
    J Lipid Res; 2010 Aug; 51(8):2090-104. PubMed ID: 20363834
    [Abstract] [Full Text] [Related]

  • 7. Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells.
    Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC.
    J Lipid Res; 2006 Feb; 47(2):366-74. PubMed ID: 16301737
    [Abstract] [Full Text] [Related]

  • 8. Abnormal metabolism flexibility in response to high palmitate concentrations in myotubes derived from obese type 2 diabetic patients.
    Kitzmann M, Lantier L, Hébrard S, Mercier J, Foretz M, Aguer C.
    Biochim Biophys Acta; 2011 Apr; 1812(4):423-30. PubMed ID: 21172433
    [Abstract] [Full Text] [Related]

  • 9. Metabolic switching of human skeletal muscle cells in vitro.
    Thoresen GH, Hessvik NP, Bakke SS, Aas V, Rustan AC.
    Prostaglandins Leukot Essent Fatty Acids; 2011 Nov; 85(5):227-34. PubMed ID: 21549583
    [Abstract] [Full Text] [Related]

  • 10. Fatty acid incubation of myotubes from humans with type 2 diabetes leads to enhanced release of beta-oxidation products because of impaired fatty acid oxidation: effects of tetradecylthioacetic acid and eicosapentaenoic acid.
    Wensaas AJ, Rustan AC, Just M, Berge RK, Drevon CA, Gaster M.
    Diabetes; 2009 Mar; 58(3):527-35. PubMed ID: 19066312
    [Abstract] [Full Text] [Related]

  • 11. Tumor Necrosis Factor-α Promotes Phosphoinositide 3-Kinase Enhancer A and AMP-Activated Protein Kinase Interaction to Suppress Lipid Oxidation in Skeletal Muscle.
    Tse MCL, Herlea-Pana O, Brobst D, Yang X, Wood J, Hu X, Liu Z, Lee CW, Zaw AM, Chow BKC, Ye K, Chan CB.
    Diabetes; 2017 Jul; 66(7):1858-1870. PubMed ID: 28404596
    [Abstract] [Full Text] [Related]

  • 12. Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise.
    Nikolić N, Bakke SS, Kase ET, Rudberg I, Flo Halle I, Rustan AC, Thoresen GH, Aas V.
    PLoS One; 2012 Jul; 7(3):e33203. PubMed ID: 22457744
    [Abstract] [Full Text] [Related]

  • 13. Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.
    Schlagowski AI, Singh F, Charles AL, Gali Ramamoorthy T, Favret F, Piquard F, Geny B, Zoll J.
    J Appl Physiol (1985); 2014 Feb 15; 116(4):364-75. PubMed ID: 24336883
    [Abstract] [Full Text] [Related]

  • 14. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.
    Zabielski P, Lanza IR, Gopala S, Heppelmann CJ, Bergen HR, Dasari S, Nair KS.
    Diabetes; 2016 Mar 15; 65(3):561-73. PubMed ID: 26718503
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Large enhancement of skeletal muscle cell glucose uptake and suppression of hepatocyte glucose-6-phosphatase activity by weak uncouplers of oxidative phosphorylation.
    Martineau LC.
    Biochim Biophys Acta; 2012 Feb 15; 1820(2):133-50. PubMed ID: 22155143
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity.
    Sparks LM, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen-Kornips E, Jörgensen JA, Nascimento EB, Hesselink MK, Schrauwen P, Hoeks J.
    Diabetologia; 2016 May 15; 59(5):1030-9. PubMed ID: 26886198
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.