These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
300 related items for PubMed ID: 20889315
21. Electrochemistry and electrocatalytic of hemoglobin immobilized on FDU-15-Pt mesoporous materials. Nie D, Liang Y, Zhou T, Li X, Shi G, Jin L. Bioelectrochemistry; 2010 Oct; 79(2):248-53. PubMed ID: 20064750 [Abstract] [Full Text] [Related]
22. Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Sun W, Cao L, Deng Y, Gong S, Shi F, Li G, Sun Z. Anal Chim Acta; 2013 Jun 05; 781():41-7. PubMed ID: 23684463 [Abstract] [Full Text] [Related]
26. Amperometric sensor for hydrogen peroxide based on direct electron transfer of spinach ferredoxin on Au electrode. Yagati AK, Lee T, Min J, Choi JW. Bioelectrochemistry; 2011 Feb 05; 80(2):169-74. PubMed ID: 20851693 [Abstract] [Full Text] [Related]
28. A novel hydrogen peroxide sensor based on the direct electron transfer of horseradish peroxidase immobilized on silica-hydroxyapatite hybrid film. Wang B, Zhang JJ, Pan ZY, Tao XQ, Wang HS. Biosens Bioelectron; 2009 Jan 01; 24(5):1141-5. PubMed ID: 18707863 [Abstract] [Full Text] [Related]
29. H2O2 determination by a biosensor based on hemoglobin. Sezgintürk MK, Dinçkaya E. Prep Biochem Biotechnol; 2009 Jan 01; 39(1):1-10. PubMed ID: 19090416 [Abstract] [Full Text] [Related]
32. Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Shi L, Liu X, Niu W, Li H, Han S, Chen J, Xu G. Biosens Bioelectron; 2009 Jan 01; 24(5):1159-63. PubMed ID: 18703329 [Abstract] [Full Text] [Related]
33. An amperometric hydrogen peroxide biosensor based on immobilizing horseradish peroxidase to a nano-Au monolayer supported by sol-gel derived carbon ceramic electrode. Lei CX, Hu SQ, Gao N, Shen GL, Yu RQ. Bioelectrochemistry; 2004 Dec 01; 65(1):33-9. PubMed ID: 15522690 [Abstract] [Full Text] [Related]
34. Direct electrochemistry and electrocatalysis of hemoglobin on undoped nanocrystalline diamond modified glassy carbon electrode. Zhu JT, Shi CG, Xu JJ, Chen HY. Bioelectrochemistry; 2007 Nov 01; 71(2):243-8. PubMed ID: 17702670 [Abstract] [Full Text] [Related]
36. Accelerated direct electrochemistry of hemoglobin based on hemoglobin-carbon nanotube (Hb-CNT) assembly. Zhang R, Wang X, Shiu KK. J Colloid Interface Sci; 2007 Dec 15; 316(2):517-22. PubMed ID: 17904150 [Abstract] [Full Text] [Related]
37. Direct electrochemistry and electrocatalysis of hemoglobin in composite film based on ionic liquid and NiO microspheres with different morphologies. Dong S, Zhang P, Liu H, Li N, Huang T. Biosens Bioelectron; 2011 Jun 15; 26(10):4082-7. PubMed ID: 21531542 [Abstract] [Full Text] [Related]
38. Direct electron transfer of hemoglobin in layered alpha-zirconium phosphate with a high thermal stability. Liu Y, Lu C, Hou W, Zhu JJ. Anal Biochem; 2008 Apr 01; 375(1):27-34. PubMed ID: 18211815 [Abstract] [Full Text] [Related]
39. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Zheng N, Zhou X, Yang W, Li X, Yuan Z. Talanta; 2009 Aug 15; 79(3):780-6. PubMed ID: 19576445 [Abstract] [Full Text] [Related]