These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


266 related items for PubMed ID: 20926289

  • 41. Characteristics of degraded cellulose obtained from steam-exploded wheat straw.
    Sun XF, Xu F, Sun RC, Fowler P, Baird MS.
    Carbohydr Res; 2005 Jan 17; 340(1):97-106. PubMed ID: 15620672
    [Abstract] [Full Text] [Related]

  • 42. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles.
    Xiao S, Gao R, Lu Y, Li J, Sun Q.
    Carbohydr Polym; 2015 Mar 30; 119():202-9. PubMed ID: 25563961
    [Abstract] [Full Text] [Related]

  • 43. Structure and thermal property of alkaline hemicelluloses from steam exploded Phyllostachys pubescens.
    Sun SN, Cao XF, Xu F, Sun RC, Jones GL, Baird M.
    Carbohydr Polym; 2014 Jan 30; 101():1191-7. PubMed ID: 24299891
    [Abstract] [Full Text] [Related]

  • 44. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction.
    Hongzhang C, Liying L.
    Bioresour Technol; 2007 Feb 30; 98(3):666-76. PubMed ID: 16574408
    [Abstract] [Full Text] [Related]

  • 45. A real explosion: the requirement of steam explosion pretreatment.
    Yu Z, Zhang B, Yu F, Xu G, Song A.
    Bioresour Technol; 2012 Oct 30; 121():335-41. PubMed ID: 22858504
    [Abstract] [Full Text] [Related]

  • 46. An efficient approach to extract nanocrystalline cellulose from sisal fibers: Structural, morphological, thermal and antibacterial analysis.
    Trivedi AK, Gupta MK.
    Int J Biol Macromol; 2023 Apr 01; 233():123496. PubMed ID: 36731698
    [Abstract] [Full Text] [Related]

  • 47. Pretreatment efficiency and structural characterization of rice straw by an integrated process of dilute-acid and steam explosion for bioethanol production.
    Chen WH, Pen BL, Yu CT, Hwang WS.
    Bioresour Technol; 2011 Feb 01; 102(3):2916-24. PubMed ID: 21134742
    [Abstract] [Full Text] [Related]

  • 48. Effect of steam explosion on biodegradation of lignin in wheat straw.
    Zhang LH, Li D, Wang LJ, Wang TP, Zhang L, Chen XD, Mao ZH.
    Bioresour Technol; 2008 Nov 01; 99(17):8512-5. PubMed ID: 18448331
    [Abstract] [Full Text] [Related]

  • 49. Characterization of natural cellulosic fibers from Nendran Banana Peduncle plants.
    Manimaran P, Pillai GP, Vignesh V, Prithiviraj M.
    Int J Biol Macromol; 2020 Nov 01; 162():1807-1815. PubMed ID: 32814104
    [Abstract] [Full Text] [Related]

  • 50. Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite.
    Lee JH, Rim NG, Jung HS, Shin H.
    Macromol Biosci; 2010 Feb 11; 10(2):173-82. PubMed ID: 19685498
    [Abstract] [Full Text] [Related]

  • 51. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.
    Seantier B, Bendahou D, Bendahou A, Grohens Y, Kaddami H.
    Carbohydr Polym; 2016 Mar 15; 138():335-48. PubMed ID: 26794770
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53. Dry-Spun Single-Filament Fibers Comprising Solely Cellulose Nanofibers from Bioresidue.
    Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K.
    ACS Appl Mater Interfaces; 2015 Jun 17; 7(23):13022-8. PubMed ID: 26017287
    [Abstract] [Full Text] [Related]

  • 54. Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites.
    George J, Ramana KV, Bawa AS, Siddaramaiah.
    Int J Biol Macromol; 2011 Jan 01; 48(1):50-7. PubMed ID: 20920524
    [Abstract] [Full Text] [Related]

  • 55. Structural changes of Salix miyabeana cellulose fibres during dilute-acid steam explosion: impact of reaction temperature and retention time.
    Diop CI, Lavoie JM, Huneault MA.
    Carbohydr Polym; 2015 Mar 30; 119():8-17. PubMed ID: 25563939
    [Abstract] [Full Text] [Related]

  • 56. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic.
    Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M.
    Biomacromolecules; 2006 Jun 30; 7(6):2044-51. PubMed ID: 16768432
    [Abstract] [Full Text] [Related]

  • 57. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol sugar cane bagasse and curaua fibers: properties of fibers and composites.
    Trindade WG, Hoareau W, Megiatto JD, Razera IA, Castellan A, Frollini E.
    Biomacromolecules; 2005 Jun 30; 6(5):2485-96. PubMed ID: 16153084
    [Abstract] [Full Text] [Related]

  • 58. Evaluation of different methods for extraction of nanocellulose from yerba mate residues.
    Dahlem MA, Borsoi C, Hansen B, Catto AL.
    Carbohydr Polym; 2019 Aug 15; 218():78-86. PubMed ID: 31221346
    [Abstract] [Full Text] [Related]

  • 59. Integrated pretreatment of banana agrowastes: Structural characterization and enhancement of enzymatic hydrolysis of cellulose obtained from banana peduncle.
    Baruah J, Bardhan P, Mukherjee AK, Deka RC, Mandal M, Kalita E.
    Int J Biol Macromol; 2022 Mar 15; 201():298-307. PubMed ID: 34999043
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.