These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
166 related items for PubMed ID: 20930400
1. Formulation and physicochemical characterization of imwitor 308 based self microemulsifying drug delivery systems. Zargar-Shoshtari S, Wen J, Alany RG. Chem Pharm Bull (Tokyo); 2010 Oct; 58(10):1332-8. PubMed ID: 20930400 [Abstract] [Full Text] [Related]
2. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. El Maghraby GM. Colloids Surf B Biointerfaces; 2010 Feb 01; 75(2):595-600. PubMed ID: 19892531 [Abstract] [Full Text] [Related]
3. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion. Laothaweerungsawat N, Neimkhum W, Anuchapreeda S, Sirithunyalug J, Chaiyana W. Int J Pharm; 2020 Apr 15; 579():119052. PubMed ID: 31982557 [Abstract] [Full Text] [Related]
4. Design and evaluation of self-microemulsifying drug delivery system (SMEDDS) of tacrolimus. Borhade V, Nair H, Hegde D. AAPS PharmSciTech; 2008 Apr 15; 9(1):13-21. PubMed ID: 18446456 [Abstract] [Full Text] [Related]
5. [Water in oil microemulsions containing NaCl for transdermal delivery of fluorouracil]. Xiao YY, Liu F, Chen ZP, Ping QN. Yao Xue Xue Bao; 2011 Jun 15; 46(6):720-6. PubMed ID: 21882535 [Abstract] [Full Text] [Related]
6. Novel microemulsion-based gels for topical delivery of indomethacin: Formulation, physicochemical properties and in vitro drug release studies. Froelich A, Osmałek T, Snela A, Kunstman P, Jadach B, Olejniczak M, Roszak G, Białas W. J Colloid Interface Sci; 2017 Dec 01; 507():323-336. PubMed ID: 28806653 [Abstract] [Full Text] [Related]
7. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation. Thakkar PJ, Madan P, Lin S. Pharm Dev Technol; 2014 May 01; 19(3):373-84. PubMed ID: 23634780 [Abstract] [Full Text] [Related]
8. Microemulsion formulations for the transdermal delivery of testosterone. Hathout RM, Woodman TJ, Mansour S, Mortada ND, Geneidi AS, Guy RH. Eur J Pharm Sci; 2010 Jun 14; 40(3):188-96. PubMed ID: 20304048 [Abstract] [Full Text] [Related]
9. Preparation and evaluation of novel microemulsion-based hydrogels for dermal delivery of benzocaine. Üstündağ Okur N, Çağlar EŞ, Arpa MD, Karasulu HY. Pharm Dev Technol; 2017 Jun 14; 22(4):500-510. PubMed ID: 26738443 [Abstract] [Full Text] [Related]
10. Characterization and evaluation of solid self-microemulsifying drug delivery systems with porous carriers as systems for improved carbamazepine release. Milović M, Djuriš J, Djekić L, Vasiljević D, Ibrić S. Int J Pharm; 2012 Oct 15; 436(1-2):58-65. PubMed ID: 22721847 [Abstract] [Full Text] [Related]
11. Development of phyllanthin-loaded self-microemulsifying drug delivery system for oral bioavailability enhancement. Duc Hanh N, Mitrevej A, Sathirakul K, Peungvicha P, Sinchaipanid N. Drug Dev Ind Pharm; 2015 Feb 15; 41(2):207-17. PubMed ID: 24237327 [Abstract] [Full Text] [Related]
12. The influence of the structure and the composition of water/AOT-Tween 85/IPM microemulsion system on transdermal delivery of 5-fluorouracil. Yanyu X, Fang L, Qineng P, Hao C. Drug Dev Ind Pharm; 2012 Dec 15; 38(12):1521-9. PubMed ID: 22324326 [Abstract] [Full Text] [Related]
13. Development and evaluation of a microemulsion formulation for transdermal delivery of terbinafine. Baboota S, Al-Azaki A, Kohli K, Ali J, Dixit N, Shakeel F. PDA J Pharm Sci Technol; 2007 Dec 15; 61(4):276-85. PubMed ID: 17933209 [Abstract] [Full Text] [Related]
14. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Djekic L, Primorac M. Int J Pharm; 2008 Mar 20; 352(1-2):231-9. PubMed ID: 18068919 [Abstract] [Full Text] [Related]
15. A Self-microemulsifying Drug Delivery System (SMEDDS) for a Novel Medicative Compound Against Depression: a Preparation and Bioavailability Study in Rats. Wu L, Qiao Y, Wang L, Guo J, Wang G, He W, Yin L, Zhao J. AAPS PharmSciTech; 2015 Oct 20; 16(5):1051-8. PubMed ID: 25652729 [Abstract] [Full Text] [Related]
16. Incorporation of antitubercular drug isoniazid in pharmaceutically accepted microemulsion: effect on microstructure and physical parameters. Mehta SK, Kaur G, Bhasin KK. Pharm Res; 2008 Jan 20; 25(1):227-36. PubMed ID: 17577642 [Abstract] [Full Text] [Related]
17. Formulation and Evaluation of a Self-microemulsifying Drug Delivery System Containing Bortezomib. Hong EP, Kim JY, Kim SH, Hwang KM, Park CW, Lee HJ, Kim DW, Weon KY, Jeong SY, Park ES. Chem Pharm Bull (Tokyo); 2016 Jan 20; 64(8):1108-17. PubMed ID: 27477648 [Abstract] [Full Text] [Related]
18. Characterizing colloidal structures of pseudoternary phase diagrams formed by oil/water/amphiphile systems. Alany RG, Tucker IG, Davies NM, Rades T. Drug Dev Ind Pharm; 2001 Jan 20; 27(1):31-8. PubMed ID: 11247533 [Abstract] [Full Text] [Related]
19. Effects of spray-drying and choice of solid carriers on concentrations of Labrasol® and Transcutol® in solid self-microemulsifying drug delivery systems (SMEDDS). Li L, Yi T, Lam CW. Molecules; 2013 Jan 02; 18(1):545-60. PubMed ID: 23282540 [Abstract] [Full Text] [Related]
20. Microemulsion systems to enhance the transdermal permeation of ivermectin in dogs: A preliminary in vitro study. Machado M, Dantas IL, Galvão JG, Lima AD, Gonsalves JKMDC, Almeida EDP, de Araujo GRS, Leal LB, Sarmento VHV, Nunes RS, Lira AAM. Res Vet Sci; 2020 Dec 02; 133():31-38. PubMed ID: 32920349 [Abstract] [Full Text] [Related] Page: [Next] [New Search]