These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
116 related items for PubMed ID: 20936605
1. A novel mechanism regulates H(2) S and SO(2) production in Saccharomyces cerevisiae. Yoshida S, Imoto J, Minato T, Oouchi R, Kamada Y, Tomita M, Soga T, Yoshimoto H. Yeast; 2011 Feb; 28(2):109-21. PubMed ID: 20936605 [Abstract] [Full Text] [Related]
2. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Jain VK, Divol B, Prior BA, Bauer FF. Appl Microbiol Biotechnol; 2012 Jan; 93(1):131-41. PubMed ID: 21720823 [Abstract] [Full Text] [Related]
3. Homocysteine- and cysteine-mediated growth defect is not associated with induction of oxidative stress response genes in yeast. Kumar A, John L, Alam MM, Gupta A, Sharma G, Pillai B, Sengupta S. Biochem J; 2006 May 15; 396(1):61-9. PubMed ID: 16433631 [Abstract] [Full Text] [Related]
4. Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase. Sohn H, Kuriyama H. Yeast; 2001 Jan 30; 18(2):125-35. PubMed ID: 11169755 [Abstract] [Full Text] [Related]
5. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF. Appl Environ Microbiol; 2008 Mar 30; 74(5):1418-27. PubMed ID: 18192430 [Abstract] [Full Text] [Related]
6. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS. Biotechnol Bioeng; 2011 Mar 30; 108(3):621-31. PubMed ID: 21246509 [Abstract] [Full Text] [Related]
7. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation. Noble J, Sanchez I, Blondin B. Microb Cell Fact; 2015 May 08; 14():68. PubMed ID: 25947166 [Abstract] [Full Text] [Related]
8. Identification and characterization of genes involved in glutathione production in yeast. Suzuki T, Yokoyama A, Tsuji T, Ikeshima E, Nakashima K, Ikushima S, Kobayashi C, Yoshida S. J Biosci Bioeng; 2011 Aug 08; 112(2):107-13. PubMed ID: 21601516 [Abstract] [Full Text] [Related]
9. Adenosine kinase-deficient mutant of Saccharomyces cerevisiae accumulates S-adenosylmethionine because of an enhanced methionine biosynthesis pathway. Kanai M, Masuda M, Takaoka Y, Ikeda H, Masaki K, Fujii T, Iefuji H. Appl Microbiol Biotechnol; 2013 Feb 08; 97(3):1183-90. PubMed ID: 22790542 [Abstract] [Full Text] [Related]
10. Evaluation of a quantitative screening method for hydrogen sulfide production by cheese-ripening microorganisms: the first step towards l-cysteine catabolism. Lopez del Castillo Lozano M, Tâche R, Bonnarme P, Landaud S. J Microbiol Methods; 2007 Apr 08; 69(1):70-7. PubMed ID: 17250912 [Abstract] [Full Text] [Related]
11. Development of bottom-fermenting saccharomyces strains that produce high SO2 levels, using integrated metabolome and transcriptome analysis. Yoshida S, Imoto J, Minato T, Oouchi R, Sugihara M, Imai T, Ishiguro T, Mizutani S, Tomita M, Soga T, Yoshimoto H. Appl Environ Microbiol; 2008 May 08; 74(9):2787-96. PubMed ID: 18310411 [Abstract] [Full Text] [Related]
12. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Nissen TL, Hamann CW, Kielland-Brandt MC, Nielsen J, Villadsen J. Yeast; 2000 Mar 30; 16(5):463-74. PubMed ID: 10705374 [Abstract] [Full Text] [Related]
13. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Chen Y, Yang X, Zhang S, Wang X, Guo C, Guo X, Xiao D. Appl Biochem Biotechnol; 2012 Jan 30; 166(2):402-13. PubMed ID: 22081326 [Abstract] [Full Text] [Related]
14. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Kamisaka Y, Kimura K, Uemura H, Yamaoka M. Appl Microbiol Biotechnol; 2015 Jan 30; 99(1):201-10. PubMed ID: 25267159 [Abstract] [Full Text] [Related]
15. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Harsch MJ, Gardner RC. Appl Microbiol Biotechnol; 2013 Jan 30; 97(1):223-35. PubMed ID: 22684328 [Abstract] [Full Text] [Related]
16. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Lee YJ, Jang JW, Kim KJ, Maeng PJ. Yeast; 2011 Feb 30; 28(2):153-66. PubMed ID: 21246628 [Abstract] [Full Text] [Related]
17. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. Cordente AG, Heinrich A, Pretorius IS, Swiegers JH. FEMS Yeast Res; 2009 May 30; 9(3):446-59. PubMed ID: 19236486 [Abstract] [Full Text] [Related]
18. Bat2p is essential in Saccharomyces cerevisiae for fusel alcohol production on the non-fermentable carbon source ethanol. Schoondermark-Stolk SA, Tabernero M, Chapman J, Ter Schure EG, Verrips CT, Verkleij AJ, Boonstra J. FEMS Yeast Res; 2005 May 30; 5(8):757-66. PubMed ID: 15851104 [Abstract] [Full Text] [Related]
19. Yeast cys3 and gsh1 mutant cells display overlapping but non-identical symptoms of oxidative stress with regard to subcellular protein localization and CDP-DAG metabolism. Matiach A, Schröder-Köhne S. Mol Genet Genomics; 2001 Nov 30; 266(3):481-96. PubMed ID: 11713678 [Abstract] [Full Text] [Related]
20. The cysteine transport system of Saccharomyces cerevisiae. Ono B, Naito K. Yeast; 1991 Nov 30; 7(8):849-55. PubMed ID: 1789006 [Abstract] [Full Text] [Related] Page: [Next] [New Search]