These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
842 related items for PubMed ID: 20939025
1. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). Bousson VD, Adams J, Engelke K, Aout M, Cohen-Solal M, Bergot C, Haguenauer D, Goldberg D, Champion K, Aksouh R, Vicaut E, Laredo JD. J Bone Miner Res; 2011 Apr; 26(4):881-93. PubMed ID: 20939025 [Abstract] [Full Text] [Related]
2. QCT of the proximal femur--which parameters should be measured to discriminate hip fracture? Museyko O, Bousson V, Adams J, Laredo J-, Engelke K. Osteoporos Int; 2016 Mar; 27(3):1137-1147. PubMed ID: 26415934 [Abstract] [Full Text] [Related]
3. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Yang L, Udall WJ, McCloskey EV, Eastell R. Osteoporos Int; 2014 Jan; 25(1):251-63. PubMed ID: 23719860 [Abstract] [Full Text] [Related]
4. Association of 3D Geometric Measures Derived From Quantitative Computed Tomography With Hip Fracture Risk in Older Men. Borggrefe J, de Buhr T, Shrestha S, Marshall LM, Orwoll E, Peters K, Black DM, Glüer CC, Osteoporotic Fractures in Men (MrOS) Study Research Group. J Bone Miner Res; 2016 Aug; 31(8):1550-8. PubMed ID: 26916713 [Abstract] [Full Text] [Related]
5. Evaluation of a simplified hip structure analysis method for the prediction of incident hip fracture events. Khoo BC, Lewis JR, Brown K, Prince RL. Osteoporos Int; 2016 Jan; 27(1):241-8. PubMed ID: 26282230 [Abstract] [Full Text] [Related]
6. Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo JD. Osteoporos Int; 2006 Jan; 17(6):855-64. PubMed ID: 16547689 [Abstract] [Full Text] [Related]
7. Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM). Carballido-Gamio J, Yu A, Wang L, Su Y, Burghardt AJ, Lang TF, Cheng X. Ann Biomed Eng; 2019 Nov; 47(11):2199-2212. PubMed ID: 31240508 [Abstract] [Full Text] [Related]
8. The combination of structural parameters and areal bone mineral density improves relation to proximal femur strength: an in vitro study with high-resolution peripheral quantitative computed tomography. Hansen S, Jensen JE, Ahrberg F, Hauge EM, Brixen K. Calcif Tissue Int; 2011 Oct; 89(4):335-46. PubMed ID: 21874544 [Abstract] [Full Text] [Related]
9. Geometry of proximal femur in the prediction of hip fracture in osteoporotic women. Gnudi S, Ripamonti C, Gualtieri G, Malavolta N. Br J Radiol; 1999 Aug; 72(860):729-33. PubMed ID: 10624337 [Abstract] [Full Text] [Related]
10. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD. Osteoporos Int; 2006 Feb; 17(2):231-6. PubMed ID: 15983728 [Abstract] [Full Text] [Related]
11. Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Pulkkinen P, Partanen J, Jalovaara P, Jämsä T. Osteoporos Int; 2004 Apr; 15(4):274-80. PubMed ID: 14760516 [Abstract] [Full Text] [Related]
12. Comparison of femur stiffness measured from DXA and QCT for assessment of hip fracture risk. Luo Y, Yang H. J Bone Miner Metab; 2019 Mar; 37(2):342-350. PubMed ID: 29671044 [Abstract] [Full Text] [Related]
13. The spatial differences in bone mineral density and hip structure between low-energy femoral neck and trochanteric fractures in elderly Chinese using quantitative computed tomography. Su YB, Wang L, Wu XB, Yi C, Yang MH, Yan D, Cheng KB, Cheng XG. Bone; 2019 Jul; 124():62-68. PubMed ID: 31004806 [Abstract] [Full Text] [Related]
14. Comparison of femoral morphology and bone mineral density between femoral neck fractures and trochanteric fractures. Maeda Y, Sugano N, Saito M, Yonenobu K. Clin Orthop Relat Res; 2011 Mar; 469(3):884-9. PubMed ID: 20725817 [Abstract] [Full Text] [Related]
15. Predictive ability of novel volumetric and geometric indices derived from dual-energy X-ray absorptiometric images of the proximal femur for hip fracture compared with conventional areal bone mineral density: the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Iki M, Winzenrieth R, Tamaki J, Sato Y, Dongmei N, Kajita E, Kouda K, Yura A, Tachiki T, Kamiya K, Kagamimori S. Osteoporos Int; 2021 Nov; 32(11):2289-2299. PubMed ID: 34041560 [Abstract] [Full Text] [Related]
17. Correlation between Parameters of Calcaneal Quantitative Ultrasound and Hip Structural Analysis in Osteoporotic Fracture Patients. Zhang L, Lv H, Zheng H, Li M, Yin P, Peng Y, Gao Y, Zhang L, Tang P. PLoS One; 2015 Nov; 10(12):e0145879. PubMed ID: 26710123 [Abstract] [Full Text] [Related]
18. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. Black DM, Bouxsein ML, Marshall LM, Cummings SR, Lang TF, Cauley JA, Ensrud KE, Nielson CM, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Group. J Bone Miner Res; 2008 Aug; 23(8):1326-33. PubMed ID: 18348697 [Abstract] [Full Text] [Related]
19. Cortical thickness in the intertrochanteric region may be relevant to hip fracture type. Zhuang H, Li Y, Lin J, Cai D, Cai S, Yan L, Yao X. BMC Musculoskelet Disord; 2017 Jul 18; 18(1):305. PubMed ID: 28720137 [Abstract] [Full Text] [Related]
20. Hip fracture risk and proximal femur geometry from DXA scans. Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD. Osteoporos Int; 2002 Jul 18; 13(7):542-50. PubMed ID: 12111014 [Abstract] [Full Text] [Related] Page: [Next] [New Search]