These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 20942463
1. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour. Tipkanon S, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Prinyawiwatkul W, Xu Z. J Agric Food Chem; 2010 Nov 10; 58(21):11340-5. PubMed ID: 20942463 [Abstract] [Full Text] [Related]
2. Soymilk processing with higher isoflavone aglycone content. Baú TR, Ida EI. Food Chem; 2015 Sep 15; 183():161-8. PubMed ID: 25863624 [Abstract] [Full Text] [Related]
3. Stability of isoflavone isomers in steamed black soybeans and black soybean koji stored under different conditions. Huang RY, Chou CC. J Agric Food Chem; 2009 Mar 11; 57(5):1927-32. PubMed ID: 19256558 [Abstract] [Full Text] [Related]
4. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Chun J, Kim GM, Lee KW, Choi ID, Kwon GH, Park JY, Jeong SJ, Kim JS, Kim JH. J Food Sci; 2007 Mar 11; 72(2):M39-44. PubMed ID: 17995840 [Abstract] [Full Text] [Related]
5. Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima. Xue Y, Yu J, Song X. J Ind Microbiol Biotechnol; 2009 Nov 11; 36(11):1401-8. PubMed ID: 19693552 [Abstract] [Full Text] [Related]
6. Isoflavone phytoestrogen degradation in fermented soymilk with selected beta-glucosidase producing L. acidophilus strains during storage at different temperatures. Otieno DO, Ashton JF, Shah NP. Int J Food Microbiol; 2007 Apr 01; 115(1):79-88. PubMed ID: 17174431 [Abstract] [Full Text] [Related]
7. Conversion of Isoflavone Glucosides to Aglycones by Partially Purified β-Glucosidases from Microbial and Vegetable Sources. Fujita A, Alencar SM, Park YK. Appl Biochem Biotechnol; 2015 Jul 01; 176(6):1659-72. PubMed ID: 26018343 [Abstract] [Full Text] [Related]
8. Deglycosylation of isoflavones in isoflavone-rich soy germ flour by Aspergillus oryzae KACC 40247. Lee SH, Seo MH, Oh DK. J Agric Food Chem; 2013 Dec 11; 61(49):12101-10. PubMed ID: 24266868 [Abstract] [Full Text] [Related]
9. Optimizing dough proofing conditions to enhance isoflavone aglycones in soy bread. Riedl KM, Zhang YC, Schwartz SJ, Vodovotz Y. J Agric Food Chem; 2005 Oct 19; 53(21):8253-8. PubMed ID: 16218672 [Abstract] [Full Text] [Related]
10. Stabilities of daidzin, glycitin, genistin, and generation of derivatives during heating. Xu Z, Wu Q, Godber JS. J Agric Food Chem; 2002 Dec 04; 50(25):7402-6. PubMed ID: 12452666 [Abstract] [Full Text] [Related]
11. Distribution profiles of isoflavone isomers in black bean kojis prepared with various filamentous fungi. Lee IH, Chou CC. J Agric Food Chem; 2006 Feb 22; 54(4):1309-14. PubMed ID: 16478253 [Abstract] [Full Text] [Related]
12. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y. J Agric Food Chem; 2014 Dec 03; 62(48):11688-95. PubMed ID: 25389558 [Abstract] [Full Text] [Related]
13. Enhancement of tofu isoflavone recovery by pretreatment of soy milk with koji enzyme extract. Wu ML, Chang JC, Lai YH, Cheng SL, Chiou RY. J Agric Food Chem; 2004 Jul 28; 52(15):4785-90. PubMed ID: 15264915 [Abstract] [Full Text] [Related]
14. The effect of thermal treatment of whole soybean flour on the conversion of isoflavones and inactivation of trypsin inhibitors. Andrade JC, Mandarino JM, Kurozawa LE, Ida EI. Food Chem; 2016 Mar 01; 194():1095-101. PubMed ID: 26471658 [Abstract] [Full Text] [Related]
15. Changes in isoflavone profiles of soybean treated with gamma irradiation. Aguiar CL, Baptista AS, Walder JM, Tsai SM, Carrão-Panizzi MC, Kitajima EW. Int J Food Sci Nutr; 2009 Aug 01; 60(5):387-94. PubMed ID: 22519677 [Abstract] [Full Text] [Related]
16. Biotransformation of soy flour isoflavones by Aspergillus niger NRRL 3122 β-glucosidase enzyme. Abdella A, El-Baz AF, Ibrahim IA, Mahrous EE, Yang ST. Nat Prod Res; 2018 Oct 01; 32(20):2382-2391. PubMed ID: 29224366 [Abstract] [Full Text] [Related]
17. Chromatographic quantification of isoflavone content from soy derivates using HPLC technique. Mantovani D, Cardozo Filho L, Santos LC, de Souza VL, Watanabe CS. J Chromatogr Sci; 2009 Oct 01; 47(9):766-9. PubMed ID: 19835685 [Abstract] [Full Text] [Related]
18. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. Yeom SJ, Kim BN, Kim YS, Oh DK. J Agric Food Chem; 2012 Feb 15; 60(6):1535-41. PubMed ID: 22251001 [Abstract] [Full Text] [Related]
19. The conversion and deglycosylation of isoflavones and anthocyanins in black soymilk process. Hsiao YH, Hsieh JF. Food Chem; 2018 Sep 30; 261():8-14. PubMed ID: 29739609 [Abstract] [Full Text] [Related]
20. Thermal degradation kinetics of isoflavone aglycones from soy and red clover. Stintzing FC, Hoffmann M, Carle R. Mol Nutr Food Res; 2006 Apr 30; 50(4-5):373-7. PubMed ID: 16598813 [Abstract] [Full Text] [Related] Page: [Next] [New Search]