These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 20946385
1. Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. Diguta CF, Rousseaux S, Weidmann S, Bretin N, Vincent B, Guilloux-Benatier M, Alexandre H. FEMS Microbiol Lett; 2010 Dec; 313(1):81-7. PubMed ID: 20946385 [Abstract] [Full Text] [Related]
2. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S, Suzuki S, Takayanagi T. Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204 [Abstract] [Full Text] [Related]
3. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum. La Guerche S, Chamont S, Blancard D, Dubourdieu D, Darriet P. Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689 [Abstract] [Full Text] [Related]
4. A multiplex PCR assay for the detection and quantification of Sclerotinia sclerotiorum and Botrytis cinerea. Reich JD, Alexander TW, Chatterton S. Lett Appl Microbiol; 2016 May; 62(5):379-85. PubMed ID: 26997098 [Abstract] [Full Text] [Related]
5. Development of a TaqMan real-time PCR assay for quantification of airborne conidia of Botrytis squamosa and management of botrytis leaf blight of onion. Carisse O, Tremblay DM, Lévesque CA, Gindro K, Ward P, Houde A. Phytopathology; 2009 Nov; 99(11):1273-80. PubMed ID: 19821731 [Abstract] [Full Text] [Related]
6. Control strategies against grey mould (Botrytis cinerea Pers.: Fr) and corresponding fungicide residues in grapes and wines. Edder P, Ortelli D, Viret O, Cognard E, De Montmollin A, Zali O. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 May; 26(5):719-25. PubMed ID: 19680943 [Abstract] [Full Text] [Related]
7. Real-time PCR based procedures for detection and quantification of Aspergillus carbonarius in wine grapes. Selma MV, Martínez-Culebras PV, Aznar R. Int J Food Microbiol; 2008 Feb 29; 122(1-2):126-34. PubMed ID: 18160163 [Abstract] [Full Text] [Related]
8. ITS-based detection and quantification of Aspergillus ochraceus and Aspergillus westerdijkiae in grapes and green coffee beans by real-time quantitative PCR. Gil-Serna J, González-Salgado A, González-Jaén MA, Vázquez C, Patiño B. Int J Food Microbiol; 2009 May 31; 131(2-3):162-7. PubMed ID: 19268380 [Abstract] [Full Text] [Related]
9. Development of real-time PCR (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Suarez MB, Walsh K, Boonham N, O'Neill T, Pearson S, Barker I. Plant Physiol Biochem; 2005 Sep 31; 43(9):890-9. PubMed ID: 16198585 [Abstract] [Full Text] [Related]
10. Specific detection of Aspergillus carbonarius by SYBR Green and TaqMan quantitative PCR assays based on the multicopy ITS2 region of the rRNA gene. González-Salgado A, Patiño B, Gil-Serna J, Vázquez C, González-Jaén MT. FEMS Microbiol Lett; 2009 Jun 31; 295(1):57-66. PubMed ID: 19473251 [Abstract] [Full Text] [Related]
11. Development of a quantitative real-time PCR assay for the detection of Aspergillus carbonarius in grapes. Mulè G, Susca A, Logrieco A, Stea G, Visconti A. Int J Food Microbiol; 2006 Sep 01; 111 Suppl 1():S28-34. PubMed ID: 16697479 [Abstract] [Full Text] [Related]
12. Sexual recombination in the Botrytis cinerea populations in Hungarian vineyards. Váczy KZ, Sándor E, Karaffa L, Fekete E, Fekete E, Arnyasi M, Czeglédi L, Kövics GJ, Druzhinina IS, Kubicek CP. Phytopathology; 2008 Dec 01; 98(12):1312-9. PubMed ID: 19000006 [Abstract] [Full Text] [Related]
13. Sensitivity of Botrytis cinerea to chitosan and acibenzolar-S-methyl. Muñoz Z, Moret A. Pest Manag Sci; 2010 Sep 01; 66(9):974-9. PubMed ID: 20730989 [Abstract] [Full Text] [Related]
14. Simultaneous detection of the main black aspergilli responsible for ochratoxin A (OTA) contamination in grapes by multiplex real-time polymerase chain reaction. Selma MV, Martínez-Culebras PV, Elizaquível P, Aznar R. Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Feb 01; 26(2):180-8. PubMed ID: 19680888 [Abstract] [Full Text] [Related]
15. Multiplex PCR for species discrimination of Sclerotiniaceae by novel laccase introns. Hirschhäuser S, Fröhlich J. Int J Food Microbiol; 2007 Sep 15; 118(2):151-7. PubMed ID: 17706821 [Abstract] [Full Text] [Related]
16. Genetic characterization of grapevine-infecting Botrytis cinerea isolates from Argentina. Muñoz C, Gómez Talquenca S, Oriolani E, Combina M. Rev Iberoam Micol; 2010 Jun 30; 27(2):66-70. PubMed ID: 20346300 [Abstract] [Full Text] [Related]
17. Characterization of molecular markers for specific and sensitive detection of Botrytis cinerea Pers.: Fr. in strawberry (Fragariaxananassa Duch.) using PCR. Rigotti S, Gindro K, Richter H, Viret O. FEMS Microbiol Lett; 2002 Apr 09; 209(2):169-74. PubMed ID: 12007801 [Abstract] [Full Text] [Related]
18. [Quantitative PCR in the diagnosis of Leishmania]. Mortarino M, Franceschi A, Mancianti F, Bazzocchi C, Genchi C, Bandi C. Parassitologia; 2004 Jun 09; 46(1-2):163-7. PubMed ID: 15305709 [Abstract] [Full Text] [Related]
19. Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Alaei H, Baeyen S, Maes M, Höfte M, Heungens K. J Microbiol Methods; 2009 Feb 09; 76(2):136-45. PubMed ID: 18940207 [Abstract] [Full Text] [Related]
20. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Saito S, Margosan D, Michailides TJ, Xiao CL. Mycologia; 2016 Feb 09; 108(2):330-43. PubMed ID: 26740541 [Abstract] [Full Text] [Related] Page: [Next] [New Search]