These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
241 related items for PubMed ID: 20947944
21. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Akimov AV, Mukherjee A, Yu CL, Chang DE, Zibrov AS, Hemmer PR, Park H, Lukin MD. Nature; 2007 Nov 15; 450(7168):402-6. PubMed ID: 18004381 [Abstract] [Full Text] [Related]
22. Coherent optical spectroscopy of a strongly driven quantum dot. Xu X, Sun B, Berman PR, Steel DG, Bracker AS, Gammon D, Sham LJ. Science; 2007 Aug 17; 317(5840):929-32. PubMed ID: 17702938 [Abstract] [Full Text] [Related]
23. Quantum nature of a strongly coupled single quantum dot-cavity system. Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu EL, Imamoğlu A. Nature; 2007 Feb 22; 445(7130):896-9. PubMed ID: 17259971 [Abstract] [Full Text] [Related]
24. Plasmonic control of nonlinear two-photon absorption in graphene nanocomposites. Cox JD, Singh MR, Antón MA, Carreño F. J Phys Condens Matter; 2013 Sep 25; 25(38):385302. PubMed ID: 23988724 [Abstract] [Full Text] [Related]
25. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays. Henson J, Dimakis E, DiMaria J, Li R, Minissale S, Dal Negro L, Moustakas TD, Paiella R. Opt Express; 2010 Sep 27; 18(20):21322-9. PubMed ID: 20941028 [Abstract] [Full Text] [Related]
26. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers. Kim J, Delfyett PJ. Opt Express; 2009 Dec 07; 17(25):22566-70. PubMed ID: 20052181 [Abstract] [Full Text] [Related]
27. Photonic crystal nanocavity laser with a single quantum dot gain. Nomura M, Kumagai N, Iwamoto S, Ota Y, Arakawa Y. Opt Express; 2009 Aug 31; 17(18):15975-82. PubMed ID: 19724596 [Abstract] [Full Text] [Related]
28. Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes. Chen Y, Gregersen N, Nielsen TR, Mørk J, Lodahl P. Opt Express; 2010 Jun 07; 18(12):12489-98. PubMed ID: 20588375 [Abstract] [Full Text] [Related]
29. Hybridization of electronic states in quantum dots through photon emission. Karrai K, Warburton RJ, Schulhauser C, Högele A, Urbaszek B, McGhee EJ, Govorov AO, Garcia JM, Gerardot BD, Petroff PM. Nature; 2004 Jan 08; 427(6970):135-8. PubMed ID: 14712271 [Abstract] [Full Text] [Related]
30. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System. He Y, Zhu KD. Sensors (Basel); 2017 Jun 20; 17(6):. PubMed ID: 28632165 [Abstract] [Full Text] [Related]
31. Quantum phase transition in a single-molecule quantum dot. Roch N, Florens S, Bouchiat V, Wernsdorfer W, Balestro F. Nature; 2008 May 29; 453(7195):633-7. PubMed ID: 18509439 [Abstract] [Full Text] [Related]
32. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Srinivasan K, Painter O. Nature; 2007 Dec 06; 450(7171):862-5. PubMed ID: 18064009 [Abstract] [Full Text] [Related]
33. Controlling quantum dot emission by plasmonic nanoarrays. Guo R, Derom S, Väkeväinen AI, van Dijk-Moes RJ, Liljeroth P, Vanmaekelbergh D, Törmä P. Opt Express; 2015 Nov 02; 23(22):28206-15. PubMed ID: 26561091 [Abstract] [Full Text] [Related]
34. Metal nanoparticle plasmons operating within a quantum lifetime. Taşgın ME. Nanoscale; 2013 Sep 21; 5(18):8616-24. PubMed ID: 23897124 [Abstract] [Full Text] [Related]
35. Transport properties of a single plasmon interacting with a hybrid exciton of a metal nanoparticle-semiconductor quantum dot system coupled to a plasmonic waveguide. Kim NC, Ko MC, Choe SI, Hao ZH, Zhou L, Li JB, Im SJ, Ko YH, Jo CG, Wang QQ. Nanotechnology; 2016 Nov 18; 27(46):465703. PubMed ID: 27749280 [Abstract] [Full Text] [Related]
37. Single quantum dot controls a plasmonic cavity's scattering and anisotropy. Hartsfield T, Chang WS, Yang SC, Ma T, Shi J, Sun L, Shvets G, Link S, Li X. Proc Natl Acad Sci U S A; 2015 Oct 06; 112(40):12288-92. PubMed ID: 26372957 [Abstract] [Full Text] [Related]
38. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle. He Y, Jiang C, Chen B, Li JJ, Zhu KD. Opt Lett; 2012 Jul 15; 37(14):2943-5. PubMed ID: 22825186 [Abstract] [Full Text] [Related]
39. Coherent control of optical absorption and the energy transfer pathway of an infrared quantum dot hybridized with a VO2 nanoparticle. Hatef A, Zamani N, Johnston W. J Phys Condens Matter; 2017 Apr 20; 29(15):155305. PubMed ID: 28222047 [Abstract] [Full Text] [Related]
40. Coherent transport of nanowire surface plasmons coupled to quantum dots. Chen W, Chen GY, Chen YN. Opt Express; 2010 May 10; 18(10):10360-8. PubMed ID: 20588891 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]