These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 20950021

  • 21. A study of the influence of isotopic substitution on the melting point and temperature of maximum density of water by means of path integral simulations of rigid models.
    McBride C, Aragones JL, Noya EG, Vega C.
    Phys Chem Chem Phys; 2012 Nov 21; 14(43):15199-205. PubMed ID: 23042133
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. High-density amorphous ice: a path-integral simulation.
    Herrero CP, Ramírez R.
    J Chem Phys; 2012 Sep 14; 137(10):104505. PubMed ID: 22979872
    [Abstract] [Full Text] [Related]

  • 24. Free energy of solvation of simple ions: molecular-dynamics study of solvation of Cl- and Na+ in the ice/water interface.
    Smith EJ, Bryk T, Haymet AD.
    J Chem Phys; 2005 Jul 15; 123(3):34706. PubMed ID: 16080754
    [Abstract] [Full Text] [Related]

  • 25. A classical polarizable model for simulations of water and ice.
    Viererblová L, Kolafa J.
    Phys Chem Chem Phys; 2011 Nov 28; 13(44):19925-35. PubMed ID: 21959694
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Simulations of the large kinetic isotope effect and the temperature dependence of the hydrogen atom transfer in lipoxygenase.
    Olsson MH, Siegbahn PE, Warshel A.
    J Am Chem Soc; 2004 Mar 10; 126(9):2820-8. PubMed ID: 14995199
    [Abstract] [Full Text] [Related]

  • 29. The phase diagram of water at negative pressures: virtual ices.
    Conde MM, Vega C, Tribello GA, Slater B.
    J Chem Phys; 2009 Jul 21; 131(3):034510. PubMed ID: 19624212
    [Abstract] [Full Text] [Related]

  • 30. An accurate and simple quantum model for liquid water.
    Paesani F, Zhang W, Case DA, Cheatham TE, Voth GA.
    J Chem Phys; 2006 Nov 14; 125(18):184507. PubMed ID: 17115765
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Properties of ices at 0 K: a test of water models.
    Aragones JL, Noya EG, Abascal JL, Vega C.
    J Chem Phys; 2007 Oct 21; 127(15):154518. PubMed ID: 17949184
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Classical and quantum gibbs free energies and phase behavior of water using simulation and cell theory.
    Klefas-Stennett M, Henchman RH.
    J Phys Chem B; 2008 Aug 14; 112(32):9769-76. PubMed ID: 18637683
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Quantum diffusion of hydrogen and muonium atoms in liquid water and hexagonal ice.
    Markland TE, Habershon S, Manolopoulos DE.
    J Chem Phys; 2008 May 21; 128(19):194506. PubMed ID: 18500879
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Dielectric constant of ice Ih and ice V: a computer simulation study.
    MacDowell LG, Vega C.
    J Phys Chem B; 2010 May 13; 114(18):6089-98. PubMed ID: 20397671
    [Abstract] [Full Text] [Related]

  • 40. Ultrafast superheating and melting of bulk ice.
    Iglev H, Schmeisser M, Simeonidis K, Thaller A, Laubereau A.
    Nature; 2006 Jan 12; 439(7073):183-6. PubMed ID: 16407948
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.