These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 20950025

  • 1. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method.
    Hantal G, Picaud S, Hoang PN, Voloshin VP, Medvedev NN, Jedlovszky P.
    J Chem Phys; 2010 Oct 14; 133(14):144702. PubMed ID: 20950025
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P, Gauden PA, Terzyk AP, Bhatia SK.
    Langmuir; 2007 Mar 27; 23(7):3666-72. PubMed ID: 17323981
    [Abstract] [Full Text] [Related]

  • 4. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric surfaces. A grand canonical Monte Carlo simulation study.
    Szori M, Jedlovszky P, Roeselová M.
    Phys Chem Chem Phys; 2010 May 14; 12(18):4604-16. PubMed ID: 20428540
    [Abstract] [Full Text] [Related]

  • 5. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation.
    Striolo A, Chialvo AA, Gubbins KE, Cummings PT.
    J Chem Phys; 2005 Jun 15; 122(23):234712. PubMed ID: 16008478
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G.
    J Chem Phys; 2008 Apr 07; 128(13):134109. PubMed ID: 18397055
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Water adsorption in ion-bearing nanopores.
    Lakatos G, Patey GN.
    J Chem Phys; 2007 Jan 14; 126(2):024703. PubMed ID: 17228962
    [Abstract] [Full Text] [Related]

  • 14. Does water condense in carbon pores?
    Liu JC, Monson PA.
    Langmuir; 2005 Oct 25; 21(22):10219-25. PubMed ID: 16229548
    [Abstract] [Full Text] [Related]

  • 15. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J, Pellenq RJ.
    J Phys Chem B; 2008 May 22; 112(20):6390-7. PubMed ID: 18433164
    [Abstract] [Full Text] [Related]

  • 16. Hypothetical high-surface-area carbons with exceptional hydrogen storage capacities: open carbon frameworks.
    Kuchta B, Firlej L, Mohammadhosseini A, Boulet P, Beckner M, Romanos J, Pfeifer P.
    J Am Chem Soc; 2012 Sep 12; 134(36):15130-7. PubMed ID: 22897685
    [Abstract] [Full Text] [Related]

  • 17. Grand canonical Monte Carlo simulation of argon adsorption at the surface of silica nanopores: effect of pore size, pore morphology, and surface roughness.
    Coasne B, Pellenq RJ.
    J Chem Phys; 2004 Feb 08; 120(6):2913-22. PubMed ID: 15268439
    [Abstract] [Full Text] [Related]

  • 18. Adsorption and structure of water on kaolinite surfaces: possible insight into ice nucleation from grand canonical monte carlo calculations.
    Croteau T, Bertram AK, Patey GN.
    J Phys Chem A; 2008 Oct 30; 112(43):10708-12. PubMed ID: 18785690
    [Abstract] [Full Text] [Related]

  • 19. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot.
    Oubal M, Picaud S, Rayez MT, Rayez JC.
    Chemphyschem; 2010 Dec 17; 11(18):4088-96. PubMed ID: 21110375
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.