These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
305 related items for PubMed ID: 20954397
1. [Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification]. Du R, Li S, Zhang X, Wang L. Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):960-5. PubMed ID: 20954397 [Abstract] [Full Text] [Related]
2. Consolidated bioprocessing (CBP) performance of Clostridium phytofermentans on AFEX-treated corn stover for ethanol production. Jin M, Balan V, Gunawan C, Dale BE. Biotechnol Bioeng; 2011 Jun; 108(6):1290-7. PubMed ID: 21280028 [Abstract] [Full Text] [Related]
3. Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO. FEMS Microbiol Lett; 2010 Sep 01; 310(1):39-47. PubMed ID: 20637040 [Abstract] [Full Text] [Related]
4. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J. Bioresour Technol; 2010 Dec 01; 101(24):9560-9. PubMed ID: 20702089 [Abstract] [Full Text] [Related]
5. Screening of thermophilic anaerobic bacteria for solid substrate cultivation on lignocellulosic substrates. Chinn MS, Nokes SE, Strobel HJ. Biotechnol Prog; 2006 Dec 01; 22(1):53-9. PubMed ID: 16454492 [Abstract] [Full Text] [Related]
6. Mechanisms of enhanced cellulosic bioethanol fermentation by co-cultivation of Clostridium and Thermoanaerobacter spp. He Q, Hemme CL, Jiang H, He Z, Zhou J. Bioresour Technol; 2011 Oct 01; 102(20):9586-92. PubMed ID: 21868218 [Abstract] [Full Text] [Related]
7. Consolidated bioprocessing of cellulosic biomass: an update. Lynd LR, van Zyl WH, McBride JE, Laser M. Curr Opin Biotechnol; 2005 Oct 01; 16(5):577-83. PubMed ID: 16154338 [Abstract] [Full Text] [Related]
8. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924☆. Singh N, Mathur AS, Gupta RP, Barrow CJ, Tuli D, Puri M. Bioresour Technol; 2018 Feb 01; 250():860-867. PubMed ID: 30001594 [Abstract] [Full Text] [Related]
9. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes. Maehara T, Ichinose H, Furukawa T, Ogasawara W, Takabatake K, Kaneko S. Fungal Biol; 2013 Mar 01; 117(3):220-6. PubMed ID: 23537879 [Abstract] [Full Text] [Related]
10. Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Zverlov VV, Schwarz WH. Ann N Y Acad Sci; 2008 Mar 01; 1125():298-307. PubMed ID: 18378600 [Abstract] [Full Text] [Related]
11. A versatile and robust aerotolerant microbial community capable of cellulosic ethanol production. Ronan P, Yeung CW, Schellenberg J, Sparling R, Wolfaardt GM, Hausner M. Bioresour Technol; 2013 Feb 01; 129():156-63. PubMed ID: 23238345 [Abstract] [Full Text] [Related]
12. Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase. Kim S, Baek SH, Lee K, Hahn JS. Microb Cell Fact; 2013 Feb 05; 12():14. PubMed ID: 23383678 [Abstract] [Full Text] [Related]
13. Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6 (Clostridium thermocellum) by co-culture with non-cellulolytic bacteria W2-10 (Geobacillus sp.). Lü Y, Li N, Yuan X, Hua B, Wang J, Ishii M, Igarashi Y, Cui Z. Appl Biochem Biotechnol; 2013 Dec 05; 171(7):1578-88. PubMed ID: 23975281 [Abstract] [Full Text] [Related]
14. Solventogenic-cellulolytic clostridia from 4-step-screening process in agricultural waste and cow intestinal tract. Virunanon C, Chantaroopamai S, Denduangbaripant J, Chulalaksananukul W. Anaerobe; 2008 Apr 05; 14(2):109-17. PubMed ID: 18242107 [Abstract] [Full Text] [Related]
15. Facultative Anaerobe Caldibacillus debilis GB1: Characterization and Use in a Designed Aerotolerant, Cellulose-Degrading Coculture with Clostridium thermocellum. Wushke S, Levin DB, Cicek N, Sparling R. Appl Environ Microbiol; 2015 Aug 15; 81(16):5567-73. PubMed ID: 26048931 [Abstract] [Full Text] [Related]
16. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Ou MS, Mohammed N, Ingram LO, Shanmugam KT. Appl Biochem Biotechnol; 2009 May 15; 155(1-3):379-85. PubMed ID: 19156365 [Abstract] [Full Text] [Related]
17. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Zhang Q, He J, Tian M, Mao Z, Tang L, Zhang J, Zhang H. Bioresour Technol; 2011 Oct 15; 102(19):8899-906. PubMed ID: 21763132 [Abstract] [Full Text] [Related]
18. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis. Buaban B, Inoue H, Yano S, Tanapongpipat S, Ruanglek V, Champreda V, Pichyangkura R, Rengpipat S, Eurwilaichitr L. J Biosci Bioeng; 2010 Jul 15; 110(1):18-25. PubMed ID: 20541110 [Abstract] [Full Text] [Related]
19. A major new component in the cellulosome of Clostridium thermocellum is a processive endo-beta-1,4-glucanase producing cellotetraose. Zverlov VV, Schantz N, Schwarz WH. FEMS Microbiol Lett; 2005 Aug 15; 249(2):353-8. PubMed ID: 16006068 [Abstract] [Full Text] [Related]
20. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Islam R, Cicek N, Sparling R, Levin D. Appl Microbiol Biotechnol; 2009 Feb 15; 82(1):141-8. PubMed ID: 18998122 [Abstract] [Full Text] [Related] Page: [Next] [New Search]