These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
133 related items for PubMed ID: 20954745
1. Sensitive fluorometric nanoparticle assays for cell counting and viability. Pihlasalo S, Pellonperä L, Martikkala E, Hänninen P, Härmä H. Anal Chem; 2010 Nov 15; 82(22):9282-8. PubMed ID: 20954745 [Abstract] [Full Text] [Related]
2. Sensitive method for determination of protein and cell concentrations based on competitive adsorption to nanoparticles and time-resolved luminescence resonance energy transfer between labeled proteins. Pihlasalo S, Puumala P, Hänninen P, Härmä H. Anal Chem; 2012 Jun 05; 84(11):4950-6. PubMed ID: 22533626 [Abstract] [Full Text] [Related]
3. High sensitivity luminescence nanoparticle assay for the detection of protein aggregation. Pihlasalo S, Kirjavainen J, Hänninen P, Härmä H. Anal Chem; 2011 Feb 15; 83(4):1163-6. PubMed ID: 21247196 [Abstract] [Full Text] [Related]
4. Sensitive quantitative protein concentration method using luminescent resonance energy transfer on a layer-by-layer europium(III) chelate particle sensor. Härmä H, Dähne L, Pihlasalo S, Suojanen J, Peltonen J, Hänninen P. Anal Chem; 2008 Dec 15; 80(24):9781-6. PubMed ID: 19012419 [Abstract] [Full Text] [Related]
5. Europium(III)-chelates embedded in nanoparticles are protected from interfering compounds present in assay media. Kokko L, Lövgren T, Soukka T. Anal Chim Acta; 2007 Feb 28; 585(1):17-23. PubMed ID: 17386642 [Abstract] [Full Text] [Related]
6. Ultrasensitive protein concentration measurement based on particle adsorption and fluorescence quenching. Pihlasalo S, Kirjavainen J, Hänninen P, Härmä H. Anal Chem; 2009 Jun 15; 81(12):4995-5000. PubMed ID: 19453161 [Abstract] [Full Text] [Related]
7. Multiple sized europium(III) chelate-dyed polystyrene particles as donors in FRET - an application for sensitive protein quantification utilizing competitive adsorption. Valanne A, Suojanen J, Peltonen J, Soukka T, Hänninen P, Härmä H. Analyst; 2009 May 15; 134(5):980-6. PubMed ID: 19381394 [Abstract] [Full Text] [Related]
8. A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors. Valanne A, Malmi P, Appelblom H, Niemelä P, Soukka T. Anal Biochem; 2008 Apr 01; 375(1):71-81. PubMed ID: 18211811 [Abstract] [Full Text] [Related]
9. Nonspecific particle-based method with two-photon excitation detection for sensitive protein quantification and cell counting. Pihlasalo S, Engbert A, Martikkala E, Ylander P, Hänninen P, Härmä H. Anal Chem; 2013 Mar 05; 85(5):2689-96. PubMed ID: 23384281 [Abstract] [Full Text] [Related]
10. Particulate and soluble Eu(III)-chelates as donor labels in homogeneous fluorescence resonance energy transfer based immunoassay. Kokko L, Kokko T, Lövgren T, Soukka T. Anal Chim Acta; 2008 Jan 07; 606(1):72-9. PubMed ID: 18068773 [Abstract] [Full Text] [Related]
11. Single lanthanide-doped oxide nanoparticles as donors in fluorescence resonance energy transfer experiments. Casanova D, Giaume D, Gacoin T, Boilot JP, Alexandrou A. J Phys Chem B; 2006 Oct 05; 110(39):19264-70. PubMed ID: 17004778 [Abstract] [Full Text] [Related]
12. A homogeneous single-label time-resolved fluorescence cAMP assay. Martikkala E, Rozwandowicz-Jansen A, Hänninen P, Petäjä-Repo U, Härmä H. J Biomol Screen; 2011 Mar 05; 16(3):356-62. PubMed ID: 21343601 [Abstract] [Full Text] [Related]
13. Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer. Kokko T, Kokko L, Soukka T, Lövgren T. Anal Chim Acta; 2007 Feb 28; 585(1):120-5. PubMed ID: 17386655 [Abstract] [Full Text] [Related]
14. Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Tian Z, Yu J, Wu C, Szymanski C, McNeill J. Nanoscale; 2010 Oct 28; 2(10):1999-2011. PubMed ID: 20697652 [Abstract] [Full Text] [Related]
15. Energy transfer mediated fluorescence from blended conjugated polymer nanoparticles. Wu C, Peng H, Jiang Y, McNeill J. J Phys Chem B; 2006 Jul 27; 110(29):14148-54. PubMed ID: 16854113 [Abstract] [Full Text] [Related]
16. Protein quantification using resonance energy transfer between donor nanoparticles and acceptor quantum dots. Härmä H, Pihlasalo S, Cywinski PJ, Mikkonen P, Hammann T, Löhmannsröben HG, Hänninen P. Anal Chem; 2013 Mar 05; 85(5):2921-6. PubMed ID: 23391291 [Abstract] [Full Text] [Related]
17. Rapid detection of trace amounts of surfactants using nanoparticles in fluorometric assays. Härmä H, Laakso S, Pihlasalo S, Hänninen P, Faure B, Rana S, Bergström L. Nanoscale; 2010 Jan 05; 2(1):69-71. PubMed ID: 20648365 [Abstract] [Full Text] [Related]
18. Gold nanoparticle quantitation via fluorescence in solution and cell culture. Aggarwal P, Dobrovolskaia MA. Methods Mol Biol; 2011 Jan 05; 697():137-43. PubMed ID: 21116962 [Abstract] [Full Text] [Related]
19. Comparison of homogeneous single-label fluorometric binding assays: fluorescence polarization and dual-parametric quenching resonance energy transfer technique. Härmä H, Sarrail G, Kirjavainen J, Martikkala E, Hemmilä I, Hänninen P. Anal Chem; 2010 Feb 01; 82(3):892-7. PubMed ID: 20047278 [Abstract] [Full Text] [Related]
20. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles. Chen J, Zeng F, Wu S, Su J, Zhao J, Tong Z. Nanotechnology; 2009 Sep 09; 20(36):365502. PubMed ID: 19687556 [Abstract] [Full Text] [Related] Page: [Next] [New Search]