These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


418 related items for PubMed ID: 20957290

  • 1. High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Park MC, Hur JY, Cho HS, Park SH, Suh KY.
    Lab Chip; 2011 Jan 07; 11(1):79-86. PubMed ID: 20957290
    [Abstract] [Full Text] [Related]

  • 2. Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing.
    Xu CX, Yin XF.
    J Chromatogr A; 2011 Feb 04; 1218(5):726-32. PubMed ID: 21185567
    [Abstract] [Full Text] [Related]

  • 3. Quantitative and dynamic assay of single cell chemotaxis.
    Lee SS, Horvath P, Pelet S, Hegemann B, Lee LP, Peter M.
    Integr Biol (Camb); 2012 Apr 04; 4(4):381-90. PubMed ID: 22230969
    [Abstract] [Full Text] [Related]

  • 4. Electroactive microwell arrays for highly efficient single-cell trapping and analysis.
    Kim SH, Yamamoto T, Fourmy D, Fujii T.
    Small; 2011 Nov 18; 7(22):3239-47. PubMed ID: 21932278
    [Abstract] [Full Text] [Related]

  • 5. Microfabricated platform for studying stem cell fates.
    Chin VI, Taupin P, Sanga S, Scheel J, Gage FH, Bhatia SN.
    Biotechnol Bioeng; 2004 Nov 05; 88(3):399-415. PubMed ID: 15486946
    [Abstract] [Full Text] [Related]

  • 6. Mesh-integrated microdroplet array for simultaneous merging and storage of single-cell droplets.
    Um E, Rha E, Choi SL, Lee SG, Park JK.
    Lab Chip; 2012 May 07; 12(9):1594-7. PubMed ID: 22422143
    [Abstract] [Full Text] [Related]

  • 7. Pumpless, selective docking of yeast cells inside a microfluidic channel induced by receding meniscus.
    Park MC, Hur JY, Kwon KW, Park SH, Suh KY.
    Lab Chip; 2006 Aug 07; 6(8):988-94. PubMed ID: 16874367
    [Abstract] [Full Text] [Related]

  • 8. High-content screening of drug-induced cardiotoxicity using quantitative single cell imaging cytometry on microfluidic device.
    Kim MJ, Lee SC, Pal S, Han E, Song JM.
    Lab Chip; 2011 Jan 07; 11(1):104-14. PubMed ID: 21060932
    [Abstract] [Full Text] [Related]

  • 9. A prototypic system of parallel electrophoresis in multiple capillaries coupled with microwell arrays.
    Su J, Ren K, Dai W, Zhao Y, Zhou J, Wu H.
    Electrophoresis; 2011 Nov 07; 32(23):3324-30. PubMed ID: 22072541
    [Abstract] [Full Text] [Related]

  • 10. Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells.
    Kumar PT, Vriens K, Cornaglia M, Gijs M, Kokalj T, Thevissen K, Geeraerd A, Cammue BP, Puers R, Lammertyn J.
    Lab Chip; 2015 Apr 21; 15(8):1852-60. PubMed ID: 25710603
    [Abstract] [Full Text] [Related]

  • 11. Ultrahigh-throughput approach for analyzing single-cell genomic damage with an agarose-based microfluidic comet array.
    Li Y, Feng X, Du W, Li Y, Liu BF.
    Anal Chem; 2013 Apr 16; 85(8):4066-73. PubMed ID: 23477638
    [Abstract] [Full Text] [Related]

  • 12. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction.
    Kim HS, Devarenne TP, Han A.
    Lab Chip; 2015 Jun 07; 15(11):2467-75. PubMed ID: 25939721
    [Abstract] [Full Text] [Related]

  • 13. Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device.
    Chen Q, Wu J, Zhang Y, Lin Z, Lin JM.
    Lab Chip; 2012 Dec 21; 12(24):5180-5. PubMed ID: 23108418
    [Abstract] [Full Text] [Related]

  • 14. Drug effects analysis on cells using a high throughput microfluidic chip.
    Gong Z, Zhao H, Zhang T, Nie F, Pathak P, Cui K, Wang Z, Wong S, Que L.
    Biomed Microdevices; 2011 Feb 21; 13(1):215-9. PubMed ID: 20978852
    [Abstract] [Full Text] [Related]

  • 15. Microfluidic systems for live cell imaging.
    Lee P, Gaige T, Hung P.
    Methods Cell Biol; 2011 Feb 21; 102():77-103. PubMed ID: 21704836
    [Abstract] [Full Text] [Related]

  • 16. High-throughput microfluidic system for monitoring diffusion-based monolayer yeast cell culture over long time periods.
    Luo C, Jiang L, Liang S, Ouyang Q, Ji H, Chen Y.
    Biomed Microdevices; 2009 Oct 21; 11(5):981-6. PubMed ID: 19381815
    [Abstract] [Full Text] [Related]

  • 17. A microfluidic system in combination with optical tweezers for analyzing rapid and reversible cytological alterations in single cells upon environmental changes.
    Eriksson E, Enger J, Nordlander B, Erjavec N, Ramser K, Goksör M, Hohmann S, Nyström T, Hanstorp D.
    Lab Chip; 2007 Jan 21; 7(1):71-6. PubMed ID: 17180207
    [Abstract] [Full Text] [Related]

  • 18. A microfluidic array with cellular valving for single cell co-culture.
    Frimat JP, Becker M, Chiang YY, Marggraf U, Janasek D, Hengstler JG, Franzke J, West J.
    Lab Chip; 2011 Jan 21; 11(2):231-7. PubMed ID: 20978708
    [Abstract] [Full Text] [Related]

  • 19. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM, Kemna EW, Wolbers F, van den Berg A.
    Electrophoresis; 2014 Feb 21; 35(2-3):385-92. PubMed ID: 23856757
    [Abstract] [Full Text] [Related]

  • 20. Centrifugation-Assisted Single-Cell Trapping in a Truncated Cone-Shaped Microwell Array Chip for the Real-Time Observation of Cellular Apoptosis.
    Huang L, Chen Y, Chen Y, Wu H.
    Anal Chem; 2015 Dec 15; 87(24):12169-76. PubMed ID: 26579559
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.