These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 20965509
1. Influence of carrier gas on the prediction of gas chromatographic retention times based on thermodynamic parameters. McGinitie TM, Karolat BR, Whale C, Harynuk JJ. J Chromatogr A; 2011 May 27; 1218(21):3241-6. PubMed ID: 20965509 [Abstract] [Full Text] [Related]
2. Prediction of gas chromatographic retention time via an additive thermodynamic model. Karolat B, Harynuk J. J Chromatogr A; 2010 Jul 16; 1217(29):4862-7. PubMed ID: 20554287 [Abstract] [Full Text] [Related]
3. Quantitative structure-retention relationship modeling of gas chromatographic retention times based on thermodynamic data. Ebrahimi-Najafabadi H, McGinitie TM, Harynuk JJ. J Chromatogr A; 2014 Sep 05; 1358():225-31. PubMed ID: 25035236 [Abstract] [Full Text] [Related]
4. Prediction of retention times in comprehensive two-dimensional gas chromatography using thermodynamic models. McGinitie TM, Harynuk JJ. J Chromatogr A; 2012 Sep 14; 1255():184-9. PubMed ID: 22386257 [Abstract] [Full Text] [Related]
5. Retention time prediction of compounds in Grob standard mixture for apolar capillary columns in temperature-programmed gas chromatography. Thewalim Y, Aldaeus F, Colmsjö A. Anal Bioanal Chem; 2009 Jan 14; 393(1):327-34. PubMed ID: 18751687 [Abstract] [Full Text] [Related]
6. Comparison of carrier gases for the separation and quantification of mineral oil hydrocarbon (MOH) fractions using online coupled high performance liquid chromatography-gas chromatography-flame ionisation detection. Groschke M, Becker R. J Chromatogr A; 2024 Jul 05; 1726():464946. PubMed ID: 38744185 [Abstract] [Full Text] [Related]
7. A standardized method for the calibration of thermodynamic data for the prediction of gas chromatographic retention times. McGinitie TM, Ebrahimi-Najafabadi H, Harynuk JJ. J Chromatogr A; 2014 Feb 21; 1330():69-73. PubMed ID: 24484693 [Abstract] [Full Text] [Related]
8. Gas-chromatographic enantioseparation of unfunctionalized chiral hydrocarbons: an overview. Schurig V, Kreidler D. Methods Mol Biol; 2013 Feb 21; 970():45-67. PubMed ID: 23283770 [Abstract] [Full Text] [Related]
9. Solvation molar enthalpies and heat capacities of n-alkanes and n-alkylbenzenes on stationary phases of wide-ranging polarity. Lebrón-Aguilar R, Quintanilla-López JE, Santiuste JM. J Chromatogr A; 2010 Dec 03; 1217(49):7767-75. PubMed ID: 21040924 [Abstract] [Full Text] [Related]
11. The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. Linga P, Kumar R, Englezos P. J Hazard Mater; 2007 Nov 19; 149(3):625-9. PubMed ID: 17689007 [Abstract] [Full Text] [Related]
12. Prediction of theoretical plate number in isothermal gas chromatographic analysis on capillary columns. Moretti P, Vezzani S, Castello G. J Chromatogr A; 2006 Nov 10; 1133(1-2):305-14. PubMed ID: 16959257 [Abstract] [Full Text] [Related]
13. Extending reversed-flow chromatographic methods for the measurement of diffusion coefficients to higher temperatures. McGivern WS, Manion JA. J Chromatogr A; 2011 Nov 18; 1218(46):8432-42. PubMed ID: 21995859 [Abstract] [Full Text] [Related]
14. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach. Vysotsky YB, Fomina ES, Belyaeva EA, Fainerman VB, Vollhardt D. Phys Chem Chem Phys; 2013 Feb 14; 15(6):2159-76. PubMed ID: 23292086 [Abstract] [Full Text] [Related]
15. GC-MS Analysis of Primary Aromatic Amines Originated From Azo Dyes in Commercial Textile or Leather Products Using Helium Alternative Carrier Gases. Tahara M, Kawakami T, Ikarashi Y. J AOAC Int; 2024 Jan 04; 107(1):61-68. PubMed ID: 37769235 [Abstract] [Full Text] [Related]
16. Tubular metal-organic framework-based capillary gas chromatography column for separation of alkanes and aromatic positional isomers. Fang ZL, Zheng SR, Tan JB, Cai SL, Fan J, Yan X, Zhang WG. J Chromatogr A; 2013 Apr 12; 1285():132-8. PubMed ID: 23473507 [Abstract] [Full Text] [Related]
17. Silica sputtering as a novel collective stationary phase deposition for microelectromechanical system gas chromatography column: feasibility and first separations. Vial J, Thiébaut D, Marty F, Guibal P, Haudebourg R, Nachef K, Danaie K, Bourlon B. J Chromatogr A; 2011 May 27; 1218(21):3262-6. PubMed ID: 21208620 [Abstract] [Full Text] [Related]
18. Carrier gas as a new factor influencing the selectivity of the gas-stationary liquid phase chromatographic system. Berezkin VG, Zagainov VF, Ivanov PB. J Chromatogr A; 2003 Jan 24; 985(1-2):57-62. PubMed ID: 12580470 [Abstract] [Full Text] [Related]
19. Study of the gas chromatographic behavior of selected alcohols and amines. Thewalim Y, Bruno O, Colmsjö A. Anal Bioanal Chem; 2011 Jan 24; 399(3):1335-45. PubMed ID: 21116618 [Abstract] [Full Text] [Related]
20. Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized multi-walled carbon nanotubes as stationary phases. Speltini A, Merli D, Quartarone E, Profumo A. J Chromatogr A; 2010 Apr 23; 1217(17):2918-24. PubMed ID: 20303087 [Abstract] [Full Text] [Related] Page: [Next] [New Search]