These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
354 related items for PubMed ID: 20966068
1. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV. J Biol Chem; 2011 Jan 14; 286(2):1420-8. PubMed ID: 20966068 [Abstract] [Full Text] [Related]
4. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Zhang H, Huang W, Zhang H, Zhu X, Craft CM, Baehr W, Chen CK. Mol Vis; 2003 Jun 09; 9():231-7. PubMed ID: 12802257 [Abstract] [Full Text] [Related]
5. Mechanism of rhodopsin kinase regulation by recoverin. Komolov KE, Senin II, Kovaleva NA, Christoph MP, Churumova VA, Grigoriev II, Akhtar M, Philippov PP, Koch KW. J Neurochem; 2009 Jul 09; 110(1):72-9. PubMed ID: 19457073 [Abstract] [Full Text] [Related]
6. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. Krupnick JG, Gurevich VV, Benovic JL. J Biol Chem; 1997 Jul 18; 272(29):18125-31. PubMed ID: 9218446 [Abstract] [Full Text] [Related]
7. Monomeric rhodopsin is the minimal functional unit required for arrestin binding. Tsukamoto H, Sinha A, DeWitt M, Farrens DL. J Mol Biol; 2010 Jun 11; 399(3):501-11. PubMed ID: 20417217 [Abstract] [Full Text] [Related]
8. A beta-arrestin binding determinant common to the second intracellular loops of rhodopsin family G protein-coupled receptors. Marion S, Oakley RH, Kim KM, Caron MG, Barak LS. J Biol Chem; 2006 Feb 03; 281(5):2932-8. PubMed ID: 16319069 [Abstract] [Full Text] [Related]
9. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods. Frederiksen R, Nymark S, Kolesnikov AV, Berry JD, Adler L, Koutalos Y, Kefalov VJ, Cornwall MC. J Gen Physiol; 2016 Jul 03; 148(1):1-11. PubMed ID: 27353443 [Abstract] [Full Text] [Related]
10. Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Kirchberg K, Kim TY, Möller M, Skegro D, Dasara Raju G, Granzin J, Büldt G, Schlesinger R, Alexiev U. Proc Natl Acad Sci U S A; 2011 Nov 15; 108(46):18690-5. PubMed ID: 22039220 [Abstract] [Full Text] [Related]
11. Receptor-specific desensitization with purified proteins. Kinase dependence and receptor specificity of beta-arrestin and arrestin in the beta 2-adrenergic receptor and rhodopsin systems. Lohse MJ, Andexinger S, Pitcher J, Trukawinski S, Codina J, Faure JP, Caron MG, Lefkowitz RJ. J Biol Chem; 1992 Apr 25; 267(12):8558-64. PubMed ID: 1349018 [Abstract] [Full Text] [Related]
17. Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin. Zhuang T, Chen Q, Cho MK, Vishnivetskiy SA, Iverson TM, Gurevich VV, Sanders CR. Proc Natl Acad Sci U S A; 2013 Jan 15; 110(3):942-7. PubMed ID: 23277586 [Abstract] [Full Text] [Related]
18. Purification of visual arrestin from squid photoreceptors and characterization of arrestin interaction with rhodopsin and rhodopsin kinase. Swardfager W, Mitchell J. J Neurochem; 2007 Apr 15; 101(1):223-31. PubMed ID: 17394465 [Abstract] [Full Text] [Related]
19. Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Haider RS, Wilhelm F, Rizk A, Mutt E, Deupi X, Peterhans C, Mühle J, Berger P, Schertler GFX, Standfuss J, Ostermaier MK. Sci Rep; 2019 Jan 24; 9(1):439. PubMed ID: 30679635 [Abstract] [Full Text] [Related]
20. Identification of receptor binding-induced conformational changes in non-visual arrestins. Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. J Biol Chem; 2014 Jul 25; 289(30):20991-1002. PubMed ID: 24867953 [Abstract] [Full Text] [Related] Page: [Next] [New Search]