These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 20967829

  • 1. Motor patterns of distal hind limb muscles in walking turtles: Implications for models of limb bone loading.
    Schoenfuss HL, Roos JD, Rivera AR, Blob RW.
    J Morphol; 2010 Dec; 271(12):1527-36. PubMed ID: 20967829
    [Abstract] [Full Text] [Related]

  • 2. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 3. Correlation of muscle function and bone strain in the hindlimb of the river cooter turtle (Pseudemys concinna).
    Aiello BR, Blob RW, Butcher MT.
    J Morphol; 2013 Sep; 274(9):1060-9. PubMed ID: 23733583
    [Abstract] [Full Text] [Related]

  • 4. Adaptive control for backward quadrupedal walking VI. metatarsophalangeal joint dynamics and motor patterns of digit muscles.
    Trank TV, Smith JL.
    J Neurophysiol; 1996 Feb; 75(2):678-9. PubMed ID: 8714644
    [Abstract] [Full Text] [Related]

  • 5. In vivo strains in the femur of river cooter turtles (Pseudemys concinna) during terrestrial locomotion: tests of force-platform models of loading mechanics.
    Butcher MT, Espinoza NR, Cirilo SR, Blob RW.
    J Exp Biol; 2008 Aug; 211(Pt 15):2397-407. PubMed ID: 18626073
    [Abstract] [Full Text] [Related]

  • 6. Hindlimb function in the alligator: integrating movements, motor patterns, ground reaction forces and bone strain of terrestrial locomotion.
    Reilly SM, Willey JS, Biknevicius AR, Blob RW.
    J Exp Biol; 2005 Mar; 208(Pt 6):993-1009. PubMed ID: 15767301
    [Abstract] [Full Text] [Related]

  • 7. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.
    Buford JA, Smith JL.
    J Neurophysiol; 1990 Sep; 64(3):756-66. PubMed ID: 2230922
    [Abstract] [Full Text] [Related]

  • 8. Unexpected motor patterns for hindlimb muscles during slope walking in the cat.
    Smith JL, Carlson-Kuhta P.
    J Neurophysiol; 1995 Nov; 74(5):2211-5. PubMed ID: 8592212
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB, Biewener AA.
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Mechanisms contributing to different joint moments observed during human walking.
    Simonsen EB, Dyhre-Poulsen P, Voigt M, Aagaard P, Fallentin N.
    Scand J Med Sci Sports; 1997 Feb; 7(1):1-13. PubMed ID: 9089898
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.