These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
228 related items for PubMed ID: 20973567
1. Global protein-protein interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. Wang Y, Cui T, Zhang C, Yang M, Huang Y, Li W, Zhang L, Gao C, He Y, Li Y, Huang F, Zeng J, Huang C, Yang Q, Tian Y, Zhao C, Chen H, Zhang H, He ZG. J Proteome Res; 2010 Dec 03; 9(12):6665-77. PubMed ID: 20973567 [Abstract] [Full Text] [Related]
2. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Zhou H, Gao S, Nguyen NN, Fan M, Jin J, Liu B, Zhao L, Xiong G, Tan M, Li S, Wong L. Biol Direct; 2014 Apr 08; 9():5. PubMed ID: 24708540 [Abstract] [Full Text] [Related]
3. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis. Kushwaha SK, Shakya M. J Theor Biol; 2010 Jan 21; 262(2):284-94. PubMed ID: 19833135 [Abstract] [Full Text] [Related]
4. A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. Zeng J, Cui T, He ZG. J Proteome Res; 2012 Sep 07; 11(9):4682-92. PubMed ID: 22808930 [Abstract] [Full Text] [Related]
5. Comparative analysis and assessment of M. tuberculosis H37Rv protein-protein interaction datasets. Zhou H, Wong L. BMC Genomics; 2011 Nov 30; 12 Suppl 3(Suppl 3):S20. PubMed ID: 22369691 [Abstract] [Full Text] [Related]
6. Fitting a geometric graph to a protein-protein interaction network. Higham DJ, Rasajski M, Przulj N. Bioinformatics; 2008 Apr 15; 24(8):1093-9. PubMed ID: 18344248 [Abstract] [Full Text] [Related]
7. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis. Cui T, Zhang L, Wang X, He ZG. BMC Genomics; 2009 Mar 19; 10():118. PubMed ID: 19298676 [Abstract] [Full Text] [Related]
8. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Zhou H, Rezaei J, Hugo W, Gao S, Jin J, Fan M, Yong CH, Wozniak M, Wong L. BMC Syst Biol; 2013 Mar 19; 7 Suppl 6(Suppl 6):S6. PubMed ID: 24564941 [Abstract] [Full Text] [Related]
9. Interaction networks: from protein functions to drug discovery. A review. Chautard E, Thierry-Mieg N, Ricard-Blum S. Pathol Biol (Paris); 2009 Jun 19; 57(4):324-33. PubMed ID: 19070972 [Abstract] [Full Text] [Related]
10. [Frontier of mycobacterium research--host vs. mycobacterium]. Okada M, Shirakawa T. Kekkaku; 2005 Sep 19; 80(9):613-29. PubMed ID: 16245793 [Abstract] [Full Text] [Related]
11. Systems biology of tuberculosis. Chandra N, Kumar D, Rao K. Tuberculosis (Edinb); 2011 Sep 19; 91(5):487-96. PubMed ID: 21459043 [Abstract] [Full Text] [Related]
12. Transferring network topological knowledge for predicting protein-protein interactions. Xu Q, Xiang EW, Yang Q. Proteomics; 2011 Oct 19; 11(19):3818-25. PubMed ID: 21770035 [Abstract] [Full Text] [Related]
13. [Development of antituberculous drugs: current status and future prospects]. Tomioka H, Namba K. Kekkaku; 2006 Dec 19; 81(12):753-74. PubMed ID: 17240921 [Abstract] [Full Text] [Related]
14. Strategies for efficient disruption of metabolism in Mycobacterium tuberculosis from network analysis. Raman K, Vashisht R, Chandra N. Mol Biosyst; 2009 Dec 19; 5(12):1740-51. PubMed ID: 19593474 [Abstract] [Full Text] [Related]
15. A human protein-protein interaction network: a resource for annotating the proteome. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. Cell; 2005 Sep 23; 122(6):957-68. PubMed ID: 16169070 [Abstract] [Full Text] [Related]
17. Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Guo Z, Wang L, Li Y, Gong X, Yao C, Ma W, Wang D, Li Y, Zhu J, Zhang M, Yang D, Rao S, Wang J. Bioinformatics; 2007 Aug 15; 23(16):2121-8. PubMed ID: 17545181 [Abstract] [Full Text] [Related]
18. A novel high-throughput B1H-ChIP method for efficiently validating and screening specific regulator-target promoter interactions. Zeng J, Li Y, Zhang S, He ZG. Appl Microbiol Biotechnol; 2012 Feb 15; 93(3):1257-69. PubMed ID: 22189860 [Abstract] [Full Text] [Related]
19. [Future prospects of molecular epidemiology in tuberculosis]. Matsumoto T, Iwamoto T. Kekkaku; 2009 Dec 15; 84(12):783-4. PubMed ID: 20077862 [Abstract] [Full Text] [Related]
20. Conserved host-pathogen PPIs. Globally conserved inter-species bacterial PPIs based conserved host-pathogen interactome derived novel target in C. pseudotuberculosis, C. diphtheriae, M. tuberculosis, C. ulcerans, Y. pestis, and E. coli targeted by Piper betel compounds. Barh D, Gupta K, Jain N, Khatri G, León-Sicairos N, Canizalez-Roman A, Tiwari S, Verma A, Rahangdale S, Shah Hassan S, dos Santos AR, Ali A, Guimarães LC, Thiago Jucá Ramos R, Devarapalli P, Barve N, Bakhtiar M, Kumavath R, Ghosh P, Miyoshi A, Silva A, Kumar A, Misra AN, Blum K, Baumbach J, Azevedo V. Integr Biol (Camb); 2013 Mar 15; 5(3):495-509. PubMed ID: 23288366 [Abstract] [Full Text] [Related] Page: [Next] [New Search]