These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Role of the beta-phosphate-gamma-phosphate interchange reaction of adenosine triphosphate in amino acid discrimination by valyl- and methionyl-tRNA synthetases from Escherichia coli. Smith LT, Cohn M. Biochemistry; 1981 Jan 20; 20(2):385-91. PubMed ID: 6258639 [No Abstract] [Full Text] [Related]
9. ATP binding plays a role in the selection of amino acid substrate by aminoacyl-tRNA synthetases. Tonomura B, Kakitani M, Ohkubo Y, Shima H, Hiromi K. Ann N Y Acad Sci; 1990 Sep 06; 613():489-93. PubMed ID: 2075999 [No Abstract] [Full Text] [Related]
10. Kinetic demonstration of the intermediate role of aminoacyl-adenylate-enzyme in the formation of valyl transfer ribonucleic acid. Midelfort CF, Chakraburtty K, Steinschneider A, Mehler AH. J Biol Chem; 1975 May 25; 250(10):3866-73. PubMed ID: 165186 [Abstract] [Full Text] [Related]
11. Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli. Fayat G, Fromant M, Blanquet S. Biochemistry; 1977 May 31; 16(11):2570-9. PubMed ID: 193563 [No Abstract] [Full Text] [Related]
12. The plant aminoacyl-tRNA synthetases. 2'-DeoxyATP and ATP in reactions catalysed by yellow lupin aminoacyl-tRNA synthetases. Jakubowski H. Acta Biochim Pol; 1980 May 31; 27(3-4):321-33. PubMed ID: 7269975 [Abstract] [Full Text] [Related]
13. [Superspecificity of aminoacyl-tRNA-synthases]. Favorova OO. Mol Biol (Mosk); 1984 May 31; 18(1):205-26. PubMed ID: 6423966 [Abstract] [Full Text] [Related]
14. Two enzymatically active forms of valyl-tRNA-synthetase from E. coli. Paradies HH. Biochem Biophys Res Commun; 1975 Jun 16; 64(4):1253-62. PubMed ID: 166643 [No Abstract] [Full Text] [Related]
15. Beta- and gamma-thio analogues of adenosine triphosphate as probes of the Escherichia coli valyl transfer ribonucleic acid synthetase reaction pathway. A novel stereospecific interchange of adenosine 5'-O-(2-thiotriphosphate) to adenosine 5'-O-(3-thiotriphosphate). Rossomando EF, Smith LT, Cohn M. Biochemistry; 1979 Dec 11; 18(25):5670-4. PubMed ID: 391274 [No Abstract] [Full Text] [Related]
16. Sulphur metabolism in Paracoccus denitrificans. Purification, properties and regulation of cysteinyl-and methionyl-tRNA synthetase. Burnell JN, Whatley FR. Biochim Biophys Acta; 1977 Mar 15; 481(1):266-78. PubMed ID: 14693 [Abstract] [Full Text] [Related]
17. Reactions of thio analogues of adenosine 5'-triphosphate catalyzed by methionyl-tRNA synthetase from Escherichia coli and metal dependence of stereospecificity. Smith LT, Cohn M. Biochemistry; 1982 Mar 30; 21(7):1530-4. PubMed ID: 7044416 [No Abstract] [Full Text] [Related]
18. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase. Old JM, Jones DS. Biochem J; 1977 Aug 01; 165(2):367-73. PubMed ID: 336037 [Abstract] [Full Text] [Related]
20. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction. Freist W, von der Haar F, Faulhammer H, Cramer F. Eur J Biochem; 1976 Jul 15; 66(3):493-7. PubMed ID: 782885 [Abstract] [Full Text] [Related] Page: [Next] [New Search]