These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


171 related items for PubMed ID: 21028901

  • 21. The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway.
    Tosha T, Hasan MR, Theil EC.
    Proc Natl Acad Sci U S A; 2008 Nov 25; 105(47):18182-7. PubMed ID: 19011101
    [Abstract] [Full Text] [Related]

  • 22. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III) displacement.
    Honarmand Ebrahimi K, Bill E, Hagedoorn PL, Hagen WR.
    Nat Chem Biol; 2012 Nov 25; 8(11):941-8. PubMed ID: 23001032
    [Abstract] [Full Text] [Related]

  • 23. Direct Evidence for Ferrous Ion Oxidation and Incorporation in the Absence of Oxidants by Dps from Marinobacter hydrocarbonoclasticus.
    Penas D, Pereira AS, Tavares P.
    Angew Chem Int Ed Engl; 2019 Jan 21; 58(4):1013-1018. PubMed ID: 30481405
    [Abstract] [Full Text] [Related]

  • 24. Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans.
    Grove A, Wilkinson SP.
    J Mol Biol; 2005 Apr 01; 347(3):495-508. PubMed ID: 15755446
    [Abstract] [Full Text] [Related]

  • 25. The role of chloride in the mechanism of O(2) activation at the mononuclear nonheme Fe(II) center of the halogenase HctB.
    Pratter SM, Light KM, Solomon EI, Straganz GD.
    J Am Chem Soc; 2014 Jul 02; 136(26):9385-95. PubMed ID: 24847780
    [Abstract] [Full Text] [Related]

  • 26. Reaction of O2 with a diiron protein generates a mixed-valent Fe2+/Fe3+ center and peroxide.
    Bradley JM, Svistunenko DA, Pullin J, Hill N, Stuart RK, Palenik B, Wilson MT, Hemmings AM, Moore GR, Le Brun NE.
    Proc Natl Acad Sci U S A; 2019 Feb 05; 116(6):2058-2067. PubMed ID: 30659147
    [Abstract] [Full Text] [Related]

  • 27. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation.
    Ebrahimi KH, Bill E, Hagedoorn PL, Hagen WR.
    Mol Biosyst; 2016 Nov 15; 12(12):3576-3588. PubMed ID: 27722502
    [Abstract] [Full Text] [Related]

  • 28. Bacterioferritin: Structure, Dynamics, and Protein-Protein Interactions at Play in Iron Storage and Mobilization.
    Rivera M.
    Acc Chem Res; 2017 Feb 21; 50(2):331-340. PubMed ID: 28177216
    [Abstract] [Full Text] [Related]

  • 29. The iron redox and hydrolysis chemistry of the ferritins.
    Bou-Abdallah F.
    Biochim Biophys Acta; 2010 Aug 21; 1800(8):719-31. PubMed ID: 20382203
    [Abstract] [Full Text] [Related]

  • 30. Ferrous binding to the multicopper oxidases Saccharomyces cerevisiae Fet3p and human ceruloplasmin: contributions to ferroxidase activity.
    Quintanar L, Gebhard M, Wang TP, Kosman DJ, Solomon EI.
    J Am Chem Soc; 2004 Jun 02; 126(21):6579-89. PubMed ID: 15161286
    [Abstract] [Full Text] [Related]

  • 31. Unique iron binding and oxidation properties of human mitochondrial ferritin: a comparative analysis with Human H-chain ferritin.
    Bou-Abdallah F, Santambrogio P, Levi S, Arosio P, Chasteen ND.
    J Mol Biol; 2005 Apr 01; 347(3):543-54. PubMed ID: 15755449
    [Abstract] [Full Text] [Related]

  • 32. Campylobacter jejuni Dps protein binds DNA in the presence of iron or hydrogen peroxide.
    Huergo LF, Rahman H, Ibrahimovic A, Day CJ, Korolik V.
    J Bacteriol; 2013 May 01; 195(9):1970-8. PubMed ID: 23435977
    [Abstract] [Full Text] [Related]

  • 33. Spectroscopic studies of Pyrococcus furiosus superoxide reductase: implications for active-site structures and the catalytic mechanism.
    Clay MD, Jenney FE, Hagedoorn PL, George GN, Adams MW, Johnson MK.
    J Am Chem Soc; 2002 Feb 06; 124(5):788-805. PubMed ID: 11817955
    [Abstract] [Full Text] [Related]

  • 34. Ferritin: the protein nanocage and iron biomineral in health and in disease.
    Theil EC.
    Inorg Chem; 2013 Nov 04; 52(21):12223-33. PubMed ID: 24102308
    [Abstract] [Full Text] [Related]

  • 35. Circular dichroism and magnetic circular dichroism studies of the biferrous form of the R2 subunit of ribonucleotide reductase from mouse: comparison to the R2 from Escherichia coli and other binuclear ferrous enzymes.
    Strand KR, Yang YS, Andersson KK, Solomon EI.
    Biochemistry; 2003 Oct 28; 42(42):12223-34. PubMed ID: 14567684
    [Abstract] [Full Text] [Related]

  • 36. A short Fe-Fe distance in peroxodiferric ferritin: control of Fe substrate versus cofactor decay?
    Hwang J, Krebs C, Huynh BH, Edmondson DE, Theil EC, Penner-Hahn JE.
    Science; 2000 Jan 07; 287(5450):122-5. PubMed ID: 10615044
    [Abstract] [Full Text] [Related]

  • 37. Geometric and electronic structure contributions to function in non-heme iron enzymes.
    Solomon EI, Light KM, Liu LV, Srnec M, Wong SD.
    Acc Chem Res; 2013 Nov 19; 46(11):2725-39. PubMed ID: 24070107
    [Abstract] [Full Text] [Related]

  • 38. Iron(II) and hydrogen peroxide detoxification by human H-chain ferritin. An EPR spin-trapping study.
    Zhao G, Arosio P, Chasteen ND.
    Biochemistry; 2006 Mar 14; 45(10):3429-36. PubMed ID: 16519538
    [Abstract] [Full Text] [Related]

  • 39. Spectroscopic definition of ferrous active sites in non-heme iron enzymes.
    Solomon EI, Gipson RR.
    Methods Enzymol; 2024 Mar 14; 703():29-49. PubMed ID: 39261000
    [Abstract] [Full Text] [Related]

  • 40. Reactivity of an iron-oxygen oxidant generated upon oxidative decarboxylation of biomimetic iron(II) α-hydroxy acid complexes.
    Paria S, Chatterjee S, Paine TK.
    Inorg Chem; 2014 Mar 17; 53(6):2810-21. PubMed ID: 24627956
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.