These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 21034863
1. Bone nodules on chitosan-polygalacturonic acid-hydroxyapatite nanocomposite films mimic hierarchy of natural bone. Khanna R, Katti KS, Katti DR. Acta Biomater; 2011 Mar; 7(3):1173-83. PubMed ID: 21034863 [Abstract] [Full Text] [Related]
2. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Katti KS, Katti DR, Dash R. Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898 [Abstract] [Full Text] [Related]
3. Osteoblast adhesion, proliferation and growth on polyelectrolyte complex-hydroxyapatite nanocomposites. Verma D, Katti KS, Katti DR. Philos Trans A Math Phys Eng Sci; 2010 Apr 28; 368(1917):2083-97. PubMed ID: 20308116 [Abstract] [Full Text] [Related]
4. Biophysicochemical evaluation of chitosan-hydroxyapatite-marine sponge collagen composite for bone tissue engineering. Pallela R, Venkatesan J, Janapala VR, Kim SK. J Biomed Mater Res A; 2012 Feb 28; 100(2):486-95. PubMed ID: 22125128 [Abstract] [Full Text] [Related]
5. Organically modified clay supported chitosan/hydroxyapatite-zinc oxide nanocomposites with enhanced mechanical and biological properties for the application in bone tissue engineering. Bhowmick A, Banerjee SL, Pramanik N, Jana P, Mitra T, Gnanamani A, Das M, Kundu PP. Int J Biol Macromol; 2018 Jan 28; 106():11-19. PubMed ID: 28774805 [Abstract] [Full Text] [Related]
6. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Zhang Y, Venugopal JR, El-Turki A, Ramakrishna S, Su B, Lim CT. Biomaterials; 2008 Nov 28; 29(32):4314-22. PubMed ID: 18715637 [Abstract] [Full Text] [Related]
7. Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. Ambre AH, Katti DR, Katti KS. J Biomed Mater Res A; 2013 Sep 28; 101(9):2644-60. PubMed ID: 23413041 [Abstract] [Full Text] [Related]
8. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Çakmak S, Çakmak AS, Gümüşderelioğlu M. Biomed Mater; 2013 Aug 28; 8(4):045014. PubMed ID: 23860136 [Abstract] [Full Text] [Related]
9. Synthesis and evaluation of collagen-chitosan-hydroxyapatite nanocomposites for bone grafting. Wang X, Wang X, Tan Y, Zhang B, Gu Z, Li X. J Biomed Mater Res A; 2009 Jun 15; 89(4):1079-87. PubMed ID: 18478560 [Abstract] [Full Text] [Related]
10. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Ngiam M, Liao S, Patil AJ, Cheng Z, Chan CK, Ramakrishna S. Bone; 2009 Jul 15; 45(1):4-16. PubMed ID: 19358900 [Abstract] [Full Text] [Related]
11. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A, Finkenzeller G, Elçin AE, Stark GB, Elçin YM. J Biomater Appl; 2014 Nov 15; 29(5):748-60. PubMed ID: 25062670 [Abstract] [Full Text] [Related]
12. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties. Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA. ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699 [Abstract] [Full Text] [Related]
13. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Madhumathi K, Shalumon KT, Rani VV, Tamura H, Furuike T, Selvamurugan N, Nair SV, Jayakumar R. Int J Biol Macromol; 2009 Jul 01; 45(1):12-5. PubMed ID: 19447253 [Abstract] [Full Text] [Related]
14. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering. Ambre AH, Katti DR, Katti KS. J Biomed Mater Res A; 2015 Jun 01; 103(6):2077-101. PubMed ID: 25331212 [Abstract] [Full Text] [Related]
15. Fabrication of cancellous biomimetic chitosan-based nanocomposite scaffolds applying a combinational method for bone tissue engineering. Jamalpoor Z, Mirzadeh H, Joghataei MT, Zeini D, Bagheri-Khoulenjani S, Nourani MR. J Biomed Mater Res A; 2015 May 01; 103(5):1882-92. PubMed ID: 25195588 [Abstract] [Full Text] [Related]
16. Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Katti KS, Ambre AH, Peterka N, Katti DR. Philos Trans A Math Phys Eng Sci; 2010 Apr 28; 368(1917):1963-80. PubMed ID: 20308111 [Abstract] [Full Text] [Related]
17. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K, Dasgupta S, Kundu B, Bissoyi A. J Biomater Sci Polym Ed; 2015 Apr 28; 26(16):1190-209. PubMed ID: 26335156 [Abstract] [Full Text] [Related]
18. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Deepthi S, Venkatesan J, Kim SK, Bumgardner JD, Jayakumar R. Int J Biol Macromol; 2016 Dec 28; 93(Pt B):1338-1353. PubMed ID: 27012892 [Abstract] [Full Text] [Related]
19. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. J Nanobiotechnology; 2015 Jun 12; 13():40. PubMed ID: 26065678 [Abstract] [Full Text] [Related]
20. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering. Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM. J Tissue Eng Regen Med; 2011 Jun 12; 5(6):e126-35. PubMed ID: 21312338 [Abstract] [Full Text] [Related] Page: [Next] [New Search]