These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
477 related items for PubMed ID: 21035835
1. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJ, Graham MC, Ngwenya BT, Farmer JG. Sci Total Environ; 2010 Dec 15; 409(2):267-77. PubMed ID: 21035835 [Abstract] [Full Text] [Related]
2. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ, Meyer DM, Sauer MM, Paustenbach DJ. J Toxicol Environ Health; 1991 Feb 15; 32(2):161-201. PubMed ID: 1995927 [Abstract] [Full Text] [Related]
3. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland. Farmer JG, Broadway A, Cave MR, Wragg J, Fordyce FM, Graham MC, Ngwenya BT, Bewley RJ. Sci Total Environ; 2011 Nov 01; 409(23):4958-65. PubMed ID: 21930292 [Abstract] [Full Text] [Related]
4. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels. Horowitz SB, Finley BL. J Toxicol Environ Health; 1993 Dec 01; 40(4):585-99. PubMed ID: 8277520 [Abstract] [Full Text] [Related]
5. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites. Farmer JG, Paterson E, Bewley RJ, Geelhoed JS, Hillier S, Meeussen JC, Lumsdon DG, Thomas RP, Graham MC. Sci Total Environ; 2006 May 01; 360(1-3):90-7. PubMed ID: 16203026 [Abstract] [Full Text] [Related]
6. Evaluation of chromium bioaccessibility in chromite ore processing residue using in vitro gastrointestinal method. Yu S, Du J, Luo T, Huang Y, Jing C. J Hazard Mater; 2012 Mar 30; 209-210():250-5. PubMed ID: 22309656 [Abstract] [Full Text] [Related]
7. Oral bioaccessibility of trivalent and hexavalent chromium in soil by simulated gastric fluid. Skowronski GA, Seide M, Abdel-Rahman MS. J Toxicol Environ Health A; 2001 Jul 06; 63(5):351-62. PubMed ID: 11471866 [Abstract] [Full Text] [Related]
8. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM, Stewart MA, Barnett MO, Basta NT, Brooks SC, Fendorf S, Mehlhorn TL. Environ Sci Technol; 2013 Oct 01; 47(19):11241-8. PubMed ID: 23941581 [Abstract] [Full Text] [Related]
9. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). Elzinga EJ, Cirmo A. J Hazard Mater; 2010 Nov 15; 183(1-3):145-54. PubMed ID: 20674158 [Abstract] [Full Text] [Related]
10. The extractability of Cr(VI) from contaminated soil in synthetic sweat. Wainman T, Hazen RE, Lioy PJ. J Expo Anal Environ Epidemiol; 1994 Nov 15; 4(2):171-81. PubMed ID: 7549472 [Abstract] [Full Text] [Related]
11. Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Roussel H, Waterlot C, Pelfrêne A, Pruvot C, Mazzuca M, Douay F. Arch Environ Contam Toxicol; 2010 May 15; 58(4):945-54. PubMed ID: 20016887 [Abstract] [Full Text] [Related]
12. Human health risk and exposure assessment of chromium (VI) in tap water. Paustenbach DJ, Finley BL, Mowat FS, Kerger BD. J Toxicol Environ Health A; 2003 Jul 25; 66(14):1295-339. PubMed ID: 12851114 [Abstract] [Full Text] [Related]
13. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Graham MC, Farmer JG, Anderson P, Paterson E, Hillier S, Lumsdon DG, Bewley RJ. Sci Total Environ; 2006 Jul 01; 364(1-3):32-44. PubMed ID: 16442591 [Abstract] [Full Text] [Related]
14. An assessment and quantitative uncertainty analysis of the health risks to workers exposed to chromium contaminated soils. Paustenbach DJ, Meyer DM, Sheehan PJ, Lau V. Toxicol Ind Health; 1991 May 01; 7(3):159-96. PubMed ID: 1949057 [Abstract] [Full Text] [Related]
15. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy. Malherbe J, Isaure MP, Séby F, Watson RP, Rodriguez-Gonzalez P, Stutzman PE, Davis CW, Maurizio C, Unceta N, Sieber JR, Long SE, Donard OF. Environ Sci Technol; 2011 Dec 15; 45(24):10492-500. PubMed ID: 22050765 [Abstract] [Full Text] [Related]
16. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils. Figueiredo E, Soares ME, Baptista P, Castro M, Bastos ML. J Agric Food Chem; 2007 Aug 22; 55(17):7192-8. PubMed ID: 17661487 [Abstract] [Full Text] [Related]
17. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques. Papassiopi N, Kontoyianni A, Vaxevanidou K, Xenidis A. Sci Total Environ; 2009 Jan 01; 407(2):925-36. PubMed ID: 18945478 [Abstract] [Full Text] [Related]
18. The value of metals bioavailability and speciation information for ecological risk assessment in arid soils. Suedel BC, Nicholson A, Day CH, Spicer J. Integr Environ Assess Manag; 2006 Oct 01; 2(4):355-64. PubMed ID: 17069177 [Abstract] [Full Text] [Related]
19. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes. Singh R, Misra V, Singh RP. Bull Environ Contam Toxicol; 2012 Feb 01; 88(2):210-4. PubMed ID: 21996721 [Abstract] [Full Text] [Related]
20. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site. Ding W, Stewart DI, Humphreys PN, Rout SP, Burke IT. Sci Total Environ; 2016 Jan 15; 541():1191-1199. PubMed ID: 26476060 [Abstract] [Full Text] [Related] Page: [Next] [New Search]