These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


477 related items for PubMed ID: 21035835

  • 21. Field evaluation of a sampling and analytical method for environmental levels of airborne hexavalent chromium.
    Sheehan P, Ricks R, Ripple S, Paustenbach D.
    Am Ind Hyg Assoc J; 1992 Jan; 53(1):57-68. PubMed ID: 1590220
    [Abstract] [Full Text] [Related]

  • 22. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites.
    Farmer JG, Thomas RP, Graham MC, Geelhoed JS, Lumsdon DG, Paterson E.
    J Environ Monit; 2002 Apr; 4(2):235-43. PubMed ID: 11993762
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E, Zagury GJ.
    Sci Total Environ; 2009 Apr 01; 407(8):2576-85. PubMed ID: 19211134
    [Abstract] [Full Text] [Related]

  • 28. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X, Dong D, Hua X, Dong S.
    J Hazard Mater; 2009 Oct 30; 170(2-3):570-7. PubMed ID: 19500903
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils.
    Chiu CC, Cheng CJ, Lin TH, Juang KW, Lee DY.
    J Hazard Mater; 2009 Jan 30; 161(2-3):1239-44. PubMed ID: 18524481
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Factors Affecting the Detection of Hexavalent Chromium in Cr-Contaminated Soil.
    Huang M, Ding G, Yan X, Rao P, Wang X, Meng X, Shi Q.
    Int J Environ Res Public Health; 2022 Aug 07; 19(15):. PubMed ID: 35955077
    [Abstract] [Full Text] [Related]

  • 33. Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures.
    Milačič R, Zuliani T, Ščančar J.
    Sci Total Environ; 2012 Jun 01; 426():359-65. PubMed ID: 22542238
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Bioaccessible arsenic in the home environment in southwest England.
    Rieuwerts JS, Searle P, Buck R.
    Sci Total Environ; 2006 Dec 01; 371(1-3):89-98. PubMed ID: 17023026
    [Abstract] [Full Text] [Related]

  • 37. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A, Mori K, Tanaka S, Fukushima M, Tatsumi K.
    Waste Manag; 2004 Dec 01; 24(5):483-90. PubMed ID: 15120432
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Highly integrated flow assembly for automated dynamic extraction and determination of readily bioaccessible chromium(VI) in soils exploiting carbon nanoparticle-based solid-phase extraction.
    Rosende M, Miró M, Segundo MA, Lima JL, Cerdà V.
    Anal Bioanal Chem; 2011 Jun 01; 400(7):2217-27. PubMed ID: 21533805
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.