These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 21046198
1. Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica. Chen GC, Kuan IC, Hong JR, Tsai BH, Lee SL, Yu CY. Biotechnol Lett; 2011 Mar; 33(3):525-9. PubMed ID: 21046198 [Abstract] [Full Text] [Related]
2. Purification and properties of the alkaline lipase from Burkholderia cepacia A.T.C.C. 25609. Dalal S, Singh PK, Raghava S, Rawat S, Gupta MN. Biotechnol Appl Biochem; 2008 Sep; 51(Pt 1):23-31. PubMed ID: 18052929 [Abstract] [Full Text] [Related]
3. Alteration of enzyme activity and enantioselectivity by biomimetic encapsulation in silica particles. Emond S, Guieysse D, Lechevallier S, Dexpert-Ghys J, Monsan P, Remaud-Siméon M. Chem Commun (Camb); 2012 Jan 30; 48(9):1314-6. PubMed ID: 22158825 [Abstract] [Full Text] [Related]
4. [Optimize conditions and activities for neutrophil lipase immobilized by nano-silica dioxide]. Jin J, Yang Y, Wu K, Wang H, Liu B, Yu Z. Sheng Wu Gong Cheng Xue Bao; 2009 Dec 30; 25(12):2003-7. PubMed ID: 20352981 [Abstract] [Full Text] [Related]
5. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Da Rós PC, Silva GA, Mendes AA, Santos JC, de Castro HF. Bioresour Technol; 2010 Jul 30; 101(14):5508-16. PubMed ID: 20299207 [Abstract] [Full Text] [Related]
6. Enhancing activity and stability of Burkholderia cepacia lipase by immobilization on surface-functionalized mesoporous silicates. Kato K, Seelan S. J Biosci Bioeng; 2010 Jun 30; 109(6):615-7. PubMed ID: 20471602 [Abstract] [Full Text] [Related]
7. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions. Gustafsson H, Thörn C, Holmberg K. Colloids Surf B Biointerfaces; 2011 Oct 15; 87(2):464-71. PubMed ID: 21733664 [Abstract] [Full Text] [Related]
8. Covalent immobilization of triacylglycerol lipase onto functionalized novel mesoporous silica supports. Bai YX, Li YF, Yang Y, Yi LX. J Biotechnol; 2006 Oct 01; 125(4):574-82. PubMed ID: 16697482 [Abstract] [Full Text] [Related]
9. Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilized into mesoporous silica. Jin Q, Jia G, Zhang Y, Yang Q, Li C. Langmuir; 2011 Oct 04; 27(19):12016-24. PubMed ID: 21851086 [Abstract] [Full Text] [Related]
10. Alkyl-substituted methoxysilanes enhance the activity and stability of D-amino acid oxidase encapsulated in biomimetic silica. Kuan IC, Chuang CA, Lee SL, Yu CY. Biotechnol Lett; 2012 Aug 04; 34(8):1493-8. PubMed ID: 22488440 [Abstract] [Full Text] [Related]
11. Nano-encapsulation of lipase by self-assembled nanogels: induction of high enzyme activity and thermal stabilization. Sawada S, Akiyoshi K. Macromol Biosci; 2010 Apr 08; 10(4):353-8. PubMed ID: 20112238 [Abstract] [Full Text] [Related]
12. Improved catalytic performance of lipase accommodated in the mesoporous silicas with polymer-modified microenvironment. Liu J, Bai S, Jin Q, Zhong H, Li C, Yang Q. Langmuir; 2012 Jun 26; 28(25):9788-96. PubMed ID: 22642540 [Abstract] [Full Text] [Related]
13. Preparation and catalytic performance of lipases encapsulated in sol-gel materials. Kato K, Gong Y, Saito T, Yokogawa Y. Biosci Biotechnol Biochem; 2002 Jan 26; 66(1):221-3. PubMed ID: 11866115 [Abstract] [Full Text] [Related]
14. Lipolytic enzymes with improved activity and selectivity upon adsorption on polymeric nanoparticles. Palocci C, Chronopoulou L, Venditti I, Cernia E, Diociaiuti M, Fratoddi I, Russo MV. Biomacromolecules; 2007 Oct 26; 8(10):3047-53. PubMed ID: 17803276 [Abstract] [Full Text] [Related]
15. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Noureddini H, Gao X, Philkana RS. Bioresour Technol; 2005 May 26; 96(7):769-77. PubMed ID: 15607189 [Abstract] [Full Text] [Related]
16. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli. Madan B, Mishra P. Appl Microbiol Biotechnol; 2010 Jan 26; 85(3):597-604. PubMed ID: 19629472 [Abstract] [Full Text] [Related]
17. Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. Ghadi A, Tabandeh F, Mahjoub S, Mohsenifar A, Roshan FT, Alavije RS. J Oleo Sci; 2015 Jan 26; 64(4):423-30. PubMed ID: 25833452 [Abstract] [Full Text] [Related]
18. Recyclable chaperone-conjugated magnetic beads for in vitro refolding of Burkholderia cepacia lipase. Jung S, Park S. Biotechnol Lett; 2009 Jan 26; 31(1):107-11. PubMed ID: 18791662 [Abstract] [Full Text] [Related]
19. A bioconjugate of Pseudomonas cepacia lipase with alginate with enhanced catalytic efficiency. Mondal K, Mehta P, Mehta BR, Varandani D, Gupta MN. Biochim Biophys Acta; 2006 Jun 26; 1764(6):1080-6. PubMed ID: 16765657 [Abstract] [Full Text] [Related]
20. Highly regioselective synthesis of 3'-O-acyl-trifluridines catalyzed by Pseudomonas cepacia lipase. Wang ZY, Bi YH, Zong MH. Appl Biochem Biotechnol; 2011 Nov 26; 165(5-6):1161-8. PubMed ID: 21822657 [Abstract] [Full Text] [Related] Page: [Next] [New Search]