These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


270 related items for PubMed ID: 21056125

  • 1. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency.
    Sobral JM, Caridade SG, Sousa RA, Mano JF, Reis RL.
    Acta Biomater; 2011 Mar; 7(3):1009-18. PubMed ID: 21056125
    [Abstract] [Full Text] [Related]

  • 2. The role of three-dimensional polymeric scaffold configuration on the uniformity of connective tissue formation by adipose stromal cells.
    Wang H, van Blitterswijk CA.
    Biomaterials; 2010 May; 31(15):4322-9. PubMed ID: 20199809
    [Abstract] [Full Text] [Related]

  • 3. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME, San WY, Wei F, Li S, Huang MH, Vert M, Hutmacher DW.
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Vascular tissue construction on poly(ε-caprolactone) scaffolds by dynamic endothelial cell seeding: effect of pore size.
    Mathews A, Colombus S, Krishnan VK, Krishnan LK.
    J Tissue Eng Regen Med; 2012 Jun; 6(6):451-61. PubMed ID: 21800434
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding.
    Yang Y, Basu S, Tomasko DL, Lee LJ, Yang ST.
    Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261
    [Abstract] [Full Text] [Related]

  • 12. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration.
    Vaquette C, Cooper-White JJ.
    Acta Biomater; 2011 Jun; 7(6):2544-57. PubMed ID: 21371575
    [Abstract] [Full Text] [Related]

  • 13. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering.
    Murphy CM, Haugh MG, O'Brien FJ.
    Biomaterials; 2010 Jan; 31(3):461-6. PubMed ID: 19819008
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Synthetic scaffold morphology controls human dermal connective tissue formation.
    Wang H, Pieper J, Péters F, van Blitterswijk CA, Lamme EN.
    J Biomed Mater Res A; 2005 Sep 15; 74(4):523-32. PubMed ID: 16028236
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The influence of the scaffold design on the distribution of adhering cells after perfusion cell seeding.
    Melchels FP, Tonnarelli B, Olivares AL, Martin I, Lacroix D, Feijen J, Wendt DJ, Grijpma DW.
    Biomaterials; 2011 Apr 15; 32(11):2878-84. PubMed ID: 21288567
    [Abstract] [Full Text] [Related]

  • 19. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA.
    Biomaterials; 2004 Aug 15; 25(18):4149-61. PubMed ID: 15046905
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.