These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 21057318

  • 41. High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions.
    Arnold DJ, Lonsbury-Martin BL, Martin GK.
    Arch Otolaryngol Head Neck Surg; 1999 Feb; 125(2):215-22. PubMed ID: 10037289
    [Abstract] [Full Text] [Related]

  • 42. General characteristics and suppression tuning properties of the distortion-product otoacoustic emission 2f1-f2 in the barn owl.
    Taschenberger G, Manley GA.
    Hear Res; 1998 Sep; 123(1-2):183-200. PubMed ID: 9745966
    [Abstract] [Full Text] [Related]

  • 43. Suppression of the 2f1-f2 otoacoustic emission in humans.
    Harris FP, Probst R, Xu L.
    Hear Res; 1992 Dec; 64(1):133-41. PubMed ID: 1490896
    [Abstract] [Full Text] [Related]

  • 44. Pure-Tone Audiometry With Forward Pressure Level Calibration Leads to Clinically-Relevant Improvements in Test-Retest Reliability.
    Lapsley Miller JA, Reed CM, Robinson SR, Perez ZD.
    Ear Hear; 2018 Dec; 39(5):946-957. PubMed ID: 29470259
    [Abstract] [Full Text] [Related]

  • 45. Clinical relevance of distortion product emissions by means of receiver operating characteristic (ROC) analysis.
    Steinhart HU, Bohlender JE, Benttzien S, Hoppe U.
    Scand Audiol; 2001 Dec; 30(3):131-40. PubMed ID: 11683451
    [Abstract] [Full Text] [Related]

  • 46. Effects of Forward- and Emitted-Pressure Calibrations on the Variability of Otoacoustic Emission Measurements Across Repeated Probe Fits.
    Maxim T, Shera CA, Charaziak KK, Abdala C.
    Ear Hear; 2019 Dec; 40(6):1345-1358. PubMed ID: 30882535
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49. Distortion-product otoacoustic emissions in middle-aged subjects with normal versus potentially presbyacusic high-frequency hearing loss.
    Nieschalk M, Hustert B, Stoll W.
    Audiology; 1998 Dec; 37(2):83-99. PubMed ID: 9547922
    [Abstract] [Full Text] [Related]

  • 50.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 51.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54. Human efferent adaptation of DPOAEs in the L1,L2 space.
    Meinke DK, Stagner BB, Martin GK, Lonsbury-Martin BL.
    Hear Res; 2005 Oct; 208(1-2):89-100. PubMed ID: 16019174
    [Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56. Hearing threshold estimation using concurrent measurement of distortion product otoacoustic emissions and auditory steady-state responses.
    Rosner T, Kandzia F, Oswald JA, Janssen T.
    J Acoust Soc Am; 2011 Feb; 129(2):840-51. PubMed ID: 21361442
    [Abstract] [Full Text] [Related]

  • 57.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 58.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 59. Exploring Optimal Stimulus Frequency Ratio for Measurement of the Quadratic f2-f1 Distortion Product Otoacoustic Emission in Humans.
    Baiduc RR, Dhar S.
    J Speech Lang Hear Res; 2018 Jul 13; 61(7):1794-1806. PubMed ID: 29946695
    [Abstract] [Full Text] [Related]

  • 60.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.