These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
227 related items for PubMed ID: 21057807
1. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters. Kaneko I, Segawa H, Furutani J, Kuwahara S, Aranami F, Hanabusa E, Tominaga R, Giral H, Caldas Y, Levi M, Kato S, Miyamoto K. Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807 [Abstract] [Full Text] [Related]
2. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S, Kaneko I, Tatsumi S, Segawa H, Miyamoto K. Contrib Nephrol; 2013 Jan; 180():86-97. PubMed ID: 23652552 [Abstract] [Full Text] [Related]
3. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice. Tomoe Y, Segawa H, Shiozawa K, Kaneko I, Tominaga R, Hanabusa E, Aranami F, Furutani J, Kuwahara S, Tatsumi S, Matsumoto M, Ito M, Miyamoto K. Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029 [Abstract] [Full Text] [Related]
4. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development. Segawa H, Onitsuka A, Furutani J, Kaneko I, Aranami F, Matsumoto N, Tomoe Y, Kuwahata M, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K. Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882 [Abstract] [Full Text] [Related]
5. Vitamin D3 suppresses Npt2c abundance and differentially modulates phosphate and calcium homeostasis in Npt2a knockout mice. Thomas L, Dissanayake LV, Tahmasbi M, Staruschenko A, Al-Masri S, Dominguez Rieg JA, Rieg T. Sci Rep; 2024 Jul 23; 14(1):16997. PubMed ID: 39043847 [Abstract] [Full Text] [Related]
10. The receptor-dependent actions of 1,25-dihydroxyvitamin D are required for normal growth plate maturation in NPt2a knockout mice. Miedlich SU, Zhu ED, Sabbagh Y, Demay MB. Endocrinology; 2010 Oct 23; 151(10):4607-12. PubMed ID: 20685875 [Abstract] [Full Text] [Related]
11. Role of sodium-dependent Pi transporter/Npt2c on Pi homeostasis in klotho knockout mice different properties between juvenile and adult stages. Hanazaki A, Ikuta K, Sasaki S, Sasaki S, Koike M, Tanifuji K, Arima Y, Kaneko I, Shiozaki Y, Tatsumi S, Hasegawa T, Amizuka N, Miyamoto KI, Segawa H. Physiol Rep; 2020 Feb 23; 8(3):e14324. PubMed ID: 32026654 [Abstract] [Full Text] [Related]
12. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption. Nowik M, Picard N, Stange G, Capuano P, Tenenhouse HS, Biber J, Murer H, Wagner CA. Pflugers Arch; 2008 Nov 23; 457(2):539-49. PubMed ID: 18535837 [Abstract] [Full Text] [Related]
18. In vivo evidence for an interplay of FGF23/Klotho/PTH axis on the phosphate handling in renal proximal tubules. Ide N, Ye R, Courbebaisse M, Olauson H, Densmore MJ, Larsson TE, Hanai JI, Lanske B. Am J Physiol Renal Physiol; 2018 Nov 01; 315(5):F1261-F1270. PubMed ID: 29993278 [Abstract] [Full Text] [Related]
19. Characterization of FGF23-Dependent Egr-1 Cistrome in the Mouse Renal Proximal Tubule. Portale AA, Zhang MY, David V, Martin A, Jiao Y, Gu W, Perwad F. PLoS One; 2015 Nov 01; 10(11):e0142924. PubMed ID: 26588476 [Abstract] [Full Text] [Related]
20. [Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium]. Kido S, Fujihara M, Nomura K, Sasaki S, Shiozaki Y, Segawa H, Tatsumi S, Miyamoto K. Nihon Eiseigaku Zasshi; 2012 Nov 01; 67(4):464-71. PubMed ID: 23095356 [Abstract] [Full Text] [Related] Page: [Next] [New Search]