These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


340 related items for PubMed ID: 21058670

  • 1. Probing microsecond time scale dynamics in proteins by methyl (1)H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r).
    Otten R, Villali J, Kern D, Mulder FA.
    J Am Chem Soc; 2010 Dec 01; 132(47):17004-14. PubMed ID: 21058670
    [Abstract] [Full Text] [Related]

  • 2. A methyl-TROSY based 13C relaxation dispersion NMR experiment for studies of chemical exchange in proteins.
    Tugarinov V, Baber JL, Clore GM.
    J Biomol NMR; 2023 Jun 01; 77(3):83-91. PubMed ID: 37095392
    [Abstract] [Full Text] [Related]

  • 3. Quantifying millisecond exchange dynamics in proteins by CPMG relaxation dispersion NMR using side-chain 1H probes.
    Hansen AL, Lundström P, Velyvis A, Kay LE.
    J Am Chem Soc; 2012 Feb 15; 134(6):3178-89. PubMed ID: 22300166
    [Abstract] [Full Text] [Related]

  • 4. A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection.
    Jiang B, Yu B, Zhang X, Liu M, Yang D.
    J Magn Reson; 2015 Aug 15; 257():1-7. PubMed ID: 26037134
    [Abstract] [Full Text] [Related]

  • 5. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP, Berlow RB, Watt ED.
    Acc Chem Res; 2008 Feb 15; 41(2):214-21. PubMed ID: 18281945
    [Abstract] [Full Text] [Related]

  • 6. Revisiting 1HN CPMG relaxation dispersion experiments: a simple modification can eliminate large artifacts.
    Yuwen T, Kay LE.
    J Biomol NMR; 2019 Nov 15; 73(10-11):641-650. PubMed ID: 31646421
    [Abstract] [Full Text] [Related]

  • 7. The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by (15)N, (13)C(alpha) and (13)C-methyl relaxation dispersion and (1)H/(2)H-exchange NMR spectroscopy.
    Korzhnev DM, Religa TL, Lundström P, Fersht AR, Kay LE.
    J Mol Biol; 2007 Sep 14; 372(2):497-512. PubMed ID: 17689561
    [Abstract] [Full Text] [Related]

  • 8. Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach.
    Ishima R, Torchia DA.
    J Biomol NMR; 2003 Mar 14; 25(3):243-8. PubMed ID: 12652136
    [Abstract] [Full Text] [Related]

  • 9. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
    Mulder FA, Hon B, Mittermaier A, Dahlquist FW, Kay LE.
    J Am Chem Soc; 2002 Feb 20; 124(7):1443-51. PubMed ID: 11841314
    [Abstract] [Full Text] [Related]

  • 10. A "Steady-State" Relaxation Dispersion Nuclear Magnetic Resonance Experiment for Studies of Chemical Exchange in Degenerate 1H Transitions of Methyl Groups.
    Tugarinov V, Okuno Y, Torricella F, Karamanos TK, Clore GM.
    J Phys Chem Lett; 2022 Dec 08; 13(48):11271-11279. PubMed ID: 36449372
    [Abstract] [Full Text] [Related]

  • 11. Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples.
    Rennella E, Schuetz AK, Kay LE.
    J Biomol NMR; 2016 Jun 08; 65(2):59-64. PubMed ID: 27251650
    [Abstract] [Full Text] [Related]

  • 12. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA, Li Y, Zhang Y, Byrd RA.
    J Am Chem Soc; 2019 Jul 31; 141(30):11881-11891. PubMed ID: 31293161
    [Abstract] [Full Text] [Related]

  • 13. Backbone dynamics of (1-71)bacterioopsin studied by two-dimensional 1H-15N NMR spectroscopy.
    Orekhov VYu, Pervushin KV, Arseniev AS.
    Eur J Biochem; 1994 Feb 01; 219(3):887-96. PubMed ID: 8112340
    [Abstract] [Full Text] [Related]

  • 14. Indirect use of deuterium in solution NMR studies of protein structure and hydrogen bonding.
    Tugarinov V.
    Prog Nucl Magn Reson Spectrosc; 2014 Feb 01; 77():49-68. PubMed ID: 24411830
    [Abstract] [Full Text] [Related]

  • 15. Microsecond time-scale conformational exchange in proteins: using long molecular dynamics trajectory to simulate NMR relaxation dispersion data.
    Xue Y, Ward JM, Yuwen T, Podkorytov IS, Skrynnikov NR.
    J Am Chem Soc; 2012 Feb 08; 134(5):2555-62. PubMed ID: 22206299
    [Abstract] [Full Text] [Related]

  • 16. Removal of slow-pulsing artifacts in in-phase 15N relaxation dispersion experiments using broadband 1H decoupling.
    Chatterjee SD, Ubbink M, van Ingen H.
    J Biomol NMR; 2018 Jun 08; 71(2):69-77. PubMed ID: 29860650
    [Abstract] [Full Text] [Related]

  • 17. Relaxation dispersion NMR spectroscopy for the study of protein allostery.
    Farber PJ, Mittermaier A.
    Biophys Rev; 2015 Jun 08; 7(2):191-200. PubMed ID: 28510170
    [Abstract] [Full Text] [Related]

  • 18. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins.
    Hansen DF, Vallurupalli P, Kay LE.
    J Phys Chem B; 2008 May 15; 112(19):5898-904. PubMed ID: 18001083
    [Abstract] [Full Text] [Related]

  • 19. Histidine side-chain dynamics and protonation monitored by 13C CPMG NMR relaxation dispersion.
    Hass MA, Yilmaz A, Christensen HE, Led JJ.
    J Biomol NMR; 2009 Aug 15; 44(4):225-33. PubMed ID: 19533375
    [Abstract] [Full Text] [Related]

  • 20. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy.
    Tollinger M, Sivertsen AC, Meier BH, Ernst M, Schanda P.
    J Am Chem Soc; 2012 Sep 12; 134(36):14800-7. PubMed ID: 22908968
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.