These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 21061147

  • 1. Effect of methylglyoxal modification of human α-crystallin on the structure, stability and chaperone function.
    Mukhopadhyay S, Kar M, Das KP.
    Protein J; 2010 Nov; 29(8):551-6. PubMed ID: 21061147
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Enhancement of chaperone function of alpha-crystallin by methylglyoxal modification.
    Nagaraj RH, Oya-Ito T, Padayatti PS, Kumar R, Mehta S, West K, Levison B, Sun J, Crabb JW, Padival AK.
    Biochemistry; 2003 Sep 16; 42(36):10746-55. PubMed ID: 12962499
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Chemical modulation of the chaperone function of human alphaA-crystallin.
    Biswas A, Lewis S, Wang B, Miyagi M, Santoshkumar P, Gangadhariah MH, Nagaraj RH.
    J Biochem; 2008 Jul 16; 144(1):21-32. PubMed ID: 18344542
    [Abstract] [Full Text] [Related]

  • 8. Methylglyoxal inhibits glycation-mediated loss in chaperone function and synthesis of pentosidine in alpha-crystallin.
    Puttaiah S, Biswas A, Staniszewska M, Nagaraj RH.
    Exp Eye Res; 2007 May 16; 84(5):914-21. PubMed ID: 17368444
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Thermal stress induced aggregation of aquaporin 0 (AQP0) and protection by α-crystallin via its chaperone function.
    Swamy-Mruthinti S, Srinivas V, Hansen JE, Rao ChM.
    PLoS One; 2013 May 16; 8(11):e80404. PubMed ID: 24312215
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effect of homocysteinylation on structure, chaperone activity and fibrillation propensity of lens alpha-crystallin.
    Yousefi R, Khazaei S, Moosavi-Movahedi AA.
    Protein Pept Lett; 2013 Aug 16; 20(8):932-41. PubMed ID: 23458667
    [Abstract] [Full Text] [Related]

  • 15. Zn2+ enhances the molecular chaperone function and stability of alpha-crystallin.
    Biswas A, Das KP.
    Biochemistry; 2008 Jan 15; 47(2):804-16. PubMed ID: 18095658
    [Abstract] [Full Text] [Related]

  • 16. Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function.
    Biswas A, Das KP.
    J Biol Chem; 2004 Oct 08; 279(41):42648-57. PubMed ID: 15292216
    [Abstract] [Full Text] [Related]

  • 17. Rapid refolding studies on the chaperone-like alpha-crystallin. Effect of alpha-crystallin on refolding of beta- and gamma-crystallins.
    Raman B, Ramakrishna T, Rao CM.
    J Biol Chem; 1995 Aug 25; 270(34):19888-92. PubMed ID: 7650002
    [Abstract] [Full Text] [Related]

  • 18. Chaperone-like activity and hydrophobicity of alpha-crystallin.
    Reddy GB, Kumar PA, Kumar MS.
    IUBMB Life; 2006 Nov 25; 58(11):632-41. PubMed ID: 17085382
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.