These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
221 related items for PubMed ID: 21062093
1. Limiting an antimicrobial peptide to the lipid-water interface enhances its bacterial membrane selectivity: a case study of MSI-367. Thennarasu S, Huang R, Lee DK, Yang P, Maloy L, Chen Z, Ramamoorthy A. Biochemistry; 2010 Dec 21; 49(50):10595-605. PubMed ID: 21062093 [Abstract] [Full Text] [Related]
2. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Thennarasu S, Lee DK, Tan A, Prasad Kari U, Ramamoorthy A. Biochim Biophys Acta; 2005 Jun 01; 1711(1):49-58. PubMed ID: 15904663 [Abstract] [Full Text] [Related]
3. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes. Arouri A, Dathe M, Blume A. Biophys Chem; 2013 Jun 01; 180-181():10-21. PubMed ID: 23792704 [Abstract] [Full Text] [Related]
4. MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Hallock KJ, Lee DK, Ramamoorthy A. Biophys J; 2003 May 01; 84(5):3052-60. PubMed ID: 12719236 [Abstract] [Full Text] [Related]
5. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Wieprecht T, Apostolov O, Beyermann M, Seelig J. Biochemistry; 2000 Jan 18; 39(2):442-52. PubMed ID: 10631006 [Abstract] [Full Text] [Related]
6. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. Yang P, Guo W, Ramamoorthy A, Chen Z. Langmuir; 2023 Apr 18; 39(15):5352-5363. PubMed ID: 37017985 [Abstract] [Full Text] [Related]
7. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants. Cheng JT, Hale JD, Elliott M, Hancock RE, Straus SK. Biochim Biophys Acta; 2011 Mar 18; 1808(3):622-33. PubMed ID: 21144817 [Abstract] [Full Text] [Related]
8. Cell selectivity correlates with membrane-specific interactions: a case study on the antimicrobial peptide G15 derived from granulysin. Ramamoorthy A, Thennarasu S, Tan A, Lee DK, Clayberger C, Krensky AM. Biochim Biophys Acta; 2006 Feb 18; 1758(2):154-63. PubMed ID: 16579960 [Abstract] [Full Text] [Related]
9. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs. Cheng JT, Hale JD, Elliot M, Hancock RE, Straus SK. Biophys J; 2009 Jan 18; 96(2):552-65. PubMed ID: 19167304 [Abstract] [Full Text] [Related]
10. Membrane composition determines pardaxin's mechanism of lipid bilayer disruption. Hallock KJ, Lee DK, Omnaas J, Mosberg HI, Ramamoorthy A. Biophys J; 2002 Aug 18; 83(2):1004-13. PubMed ID: 12124282 [Abstract] [Full Text] [Related]
11. Solid-state NMR investigation of the membrane-disrupting mechanism of antimicrobial peptides MSI-78 and MSI-594 derived from magainin 2 and melittin. Ramamoorthy A, Thennarasu S, Lee DK, Tan A, Maloy L. Biophys J; 2006 Jul 01; 91(1):206-16. PubMed ID: 16603496 [Abstract] [Full Text] [Related]
12. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells. Rezansoff AJ, Hunter HN, Jing W, Park IY, Kim SC, Vogel HJ. J Pept Res; 2005 May 01; 65(5):491-501. PubMed ID: 15853943 [Abstract] [Full Text] [Related]
13. Proton induced vesicle fusion and the isothermal lalpha-->HII phase transition of lipid bilayers: a 31P-NMR and titration calorimetry study. Wenk MR, Seelig J. Biochim Biophys Acta; 1998 Jul 17; 1372(2):227-36. PubMed ID: 9675291 [Abstract] [Full Text] [Related]
14. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ, Lewis RN, Kondejewski LH, Hodges RS, McElhaney RN. Biochim Biophys Acta; 1999 Mar 04; 1417(2):211-23. PubMed ID: 10082797 [Abstract] [Full Text] [Related]
15. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A, Thennarasu S, Tan A, Gottipati K, Sreekumar S, Heyl DL, An FY, Shelburne CE. Biochemistry; 2006 May 23; 45(20):6529-40. PubMed ID: 16700563 [Abstract] [Full Text] [Related]
16. Antimicrobial and membrane disrupting activities of a peptide derived from the human cathelicidin antimicrobial peptide LL37. Thennarasu S, Tan A, Penumatchu R, Shelburne CE, Heyl DL, Ramamoorthy A. Biophys J; 2010 Jan 20; 98(2):248-57. PubMed ID: 20338846 [Abstract] [Full Text] [Related]
17. The effect of binding of spider-derived antimicrobial peptides, oxyopinins, on lipid membranes. Nomura K, Corzo G. Biochim Biophys Acta; 2006 Sep 20; 1758(9):1475-82. PubMed ID: 16777059 [Abstract] [Full Text] [Related]
18. Effects of peptide hydrophobicity on its incorporation in phospholipid membranes--an NMR and ellipsometry study. Orädd G, Schmidtchen A, Malmsten M. Biochim Biophys Acta; 2011 Jan 20; 1808(1):244-52. PubMed ID: 20801096 [Abstract] [Full Text] [Related]
19. Membrane orientation of MSI-78 measured by sum frequency generation vibrational spectroscopy. Yang P, Ramamoorthy A, Chen Z. Langmuir; 2011 Jun 21; 27(12):7760-7. PubMed ID: 21595453 [Abstract] [Full Text] [Related]
20. Interaction of W-substituted analogs of cyclo-RRRWFW with bacterial lipopolysaccharides: the role of the aromatic cluster in antimicrobial activity. Bagheri M, Keller S, Dathe M. Antimicrob Agents Chemother; 2011 Feb 21; 55(2):788-97. PubMed ID: 21098244 [Abstract] [Full Text] [Related] Page: [Next] [New Search]