These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


121 related items for PubMed ID: 21067763

  • 1. Polydimethylsiloxane-based permeation passive air sampler. Part II: Effect of temperature and humidity on the calibration constants.
    Seethapathy S, Górecki T.
    J Chromatogr A; 2010 Dec 10; 1217(50):7907-13. PubMed ID: 21067763
    [Abstract] [Full Text] [Related]

  • 2. Polydimethylsiloxane-based permeation passive air sampler. Part I: Calibration constants and their relation to retention indices of the analytes.
    Seethapathy S, Górecki T.
    J Chromatogr A; 2011 Jan 07; 1218(1):143-55. PubMed ID: 21112594
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Calibration of polydimethylsiloxane and polyurethane foam passive air samplers for measuring semi volatile organic compounds using a novel exposure chamber design.
    Tromp PC, Beeltje H, Okeme JO, Vermeulen R, Pronk A, Diamond ML.
    Chemosphere; 2019 Jul 07; 227():435-443. PubMed ID: 31003128
    [Abstract] [Full Text] [Related]

  • 6. A new approach for diffusive sampling based on SPME for occupational exposure assessment.
    Marín P, Periago JF, Prado C.
    J Occup Environ Hyg; 2013 Jul 07; 10(3):132-42. PubMed ID: 23356408
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.
    Woolfenden E.
    J Chromatogr A; 2010 Apr 16; 1217(16):2674-84. PubMed ID: 20106481
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. New applications of the mathematical model of a permeation passive sampler: prediction of the effective uptake rate and storage stability.
    Salim F, Górecki T, Ioannidis M.
    Environ Sci Process Impacts; 2019 Jan 23; 21(1):113-123. PubMed ID: 30411756
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Experimentally validated mathematical model of analyte uptake by permeation passive samplers.
    Salim F, Ioannidis M, Górecki T.
    Environ Sci Process Impacts; 2017 Nov 15; 19(11):1363-1373. PubMed ID: 28937162
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Determination of deployment specific chemical uptake rates for SPMD and PDMS using a passive flow monitor.
    O'Brien D, Komarova T, Mueller JF.
    Mar Pollut Bull; 2012 May 15; 64(5):1005-11. PubMed ID: 22406046
    [Abstract] [Full Text] [Related]

  • 19. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.
    Chaemfa C, Barber JL, Gocht T, Harner T, Holoubek I, Klanova J, Jones KC.
    Environ Pollut; 2008 Dec 15; 156(3):1290-7. PubMed ID: 18474408
    [Abstract] [Full Text] [Related]

  • 20. Laboratory and field validation of a combined NO2-SO2 Radiello passive sampler.
    Swaans W, Goelen E, De Fré R, Damen E, Van Avermaet P, Roekens E, Keppens V.
    J Environ Monit; 2007 Nov 15; 9(11):1231-40. PubMed ID: 17968450
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.