These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 21069299
1. Application of ATR-far-infrared spectroscopy to the analysis of natural resins. Prati S, Sciutto G, Mazzeo R, Torri C, Fabbri D. Anal Bioanal Chem; 2011 Mar; 399(9):3081-91. PubMed ID: 21069299 [Abstract] [Full Text] [Related]
2. Characterisation of fresh and aged terpenic resins by micro-FTIR and GC-MS analyses of varnishes in XVI-XVII centuries paintings. Cartoni G, Russo MV, Spinelli F, Talarico F. Ann Chim; 2003 Nov; 93(11):849-61. PubMed ID: 14703854 [Abstract] [Full Text] [Related]
3. Assessment of the ageing of triterpenoid paint varnishes using fluorescence, Raman and FTIR spectroscopy. Nevin A, Comelli D, Osticioli I, Toniolo L, Valentini G, Cubeddu R. Anal Bioanal Chem; 2009 Dec; 395(7):2139-49. PubMed ID: 19669734 [Abstract] [Full Text] [Related]
4. Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense. Bruni S, Guglielmi V. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec; 121():613-22. PubMed ID: 24291439 [Abstract] [Full Text] [Related]
5. ATR-FTIR spectroscopy and quantitative multivariate analysis of paints and coating materials. Hayes PA, Vahur S, Leito I. Spectrochim Acta A Mol Biomol Spectrosc; 2014 Dec 10; 133():207-13. PubMed ID: 24945861 [Abstract] [Full Text] [Related]
6. Spectroscopic investigations on the depth-dependent degradation gradients of aged triterpenoid varnishes. Theodorakopoulos C, Zafiropulos V, Boon JJ, Boyatzis SC. Appl Spectrosc; 2007 Oct 10; 61(10):1045-51. PubMed ID: 17958953 [Abstract] [Full Text] [Related]
7. Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis-gas chromatography-mass spectrometry with on line trimethylsilylation. Osete-Cortina L, Doménech-Carbó MT. J Chromatogr A; 2005 Feb 18; 1065(2):265-78. PubMed ID: 15782973 [Abstract] [Full Text] [Related]
8. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part II: white paint. Bell SE, Fido LA, Speers SJ, Armstrong WJ, Spratt S. Appl Spectrosc; 2005 Nov 18; 59(11):1340-6. PubMed ID: 16316511 [Abstract] [Full Text] [Related]
9. Characterisation of varnishes used in violins by pyrolysis-gas chromatography/mass spectrometry. Chiavari G, Montalbani S, Otero V. Rapid Commun Mass Spectrom; 2008 Dec 18; 22(23):3711-8. PubMed ID: 18973195 [Abstract] [Full Text] [Related]
10. Evaluation of MidIR fibre optic reflectance: detection limit, reproducibility and binary mixture discrimination. Sessa C, Bagán H, García JF. Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov 18; 115():617-28. PubMed ID: 23872021 [Abstract] [Full Text] [Related]
11. ATR-FT-IR spectroscopy in the region of 550-230 cm(-1) for identification of inorganic pigments. Vahur S, Teearu A, Leito I. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Mar 18; 75(3):1061-72. PubMed ID: 20061180 [Abstract] [Full Text] [Related]
12. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes. Rosi F, Legan L, Miliani C, Ropret P. Anal Bioanal Chem; 2017 May 18; 409(12):3187-3197. PubMed ID: 28265712 [Abstract] [Full Text] [Related]
13. ATR and transmission analysis of pigments by means of far infrared spectroscopy. Kendix EL, Prati S, Joseph E, Sciutto G, Mazzeo R. Anal Bioanal Chem; 2009 Jun 18; 394(4):1023-32. PubMed ID: 19266186 [Abstract] [Full Text] [Related]
14. Forensic analysis of architectural finishes using fourier transform infrared and Raman spectroscopy, part I: the resin bases. Bell SE, Fido LA, Speers SJ, Armstrong WJ, Spratt S. Appl Spectrosc; 2005 Nov 18; 59(11):1333-9. PubMed ID: 16316510 [Abstract] [Full Text] [Related]
15. Characterization and Identification of Natural Terpenic Resins employed in "Madonna con Bambino e Angeli" by Antonello da Messina using Gas Chromatography-Mass Spectrometry. Russo MV, Avino P. Chem Cent J; 2012 Jun 21; 6(1):59. PubMed ID: 22721351 [Abstract] [Full Text] [Related]
16. Study of Burseraceae resins used in binding media and varnishes from artworks by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. De la Cruz-Cañizares J, Doménech-Carbó MT, Gimeno-Adelantado JV, Mateo-Castro R, Bosch-Reig F. J Chromatogr A; 2005 Nov 04; 1093(1-2):177-94. PubMed ID: 16233883 [Abstract] [Full Text] [Related]
17. Disclosing the composition of unknown historical drug formulations: an emblematic case from the Spezieria of St. Maria della Scala in Rome. Lodi GC, Borsato G, Vázquez de Ágredos Pascual ML, Izzo FC. Anal Bioanal Chem; 2020 Nov 04; 412(27):7581-7593. PubMed ID: 32918172 [Abstract] [Full Text] [Related]
18. Identification of diterpenes in canvas painting varnishes by gas chromatography-mass spectrometry with combined derivatisation. Osete-Cortina L, Doménech-Carbó MT, Mateo-Castro R, Gimeno-Adelantado JV, Bosch-Reig F. J Chromatogr A; 2004 Jan 23; 1024(1-2):187-94. PubMed ID: 14753721 [Abstract] [Full Text] [Related]
19. GC-MS characterisation and identification of natural terpenic resins employed in works of art. Cartoni G, Russo MV, Spinelli F, Talarico F. Ann Chim; 2004 Nov 23; 94(11):767-82. PubMed ID: 15626238 [Abstract] [Full Text] [Related]
20. ATR-FT-IR spectroscopy in the region of 500-230 cm(-1) for identification of inorganic red pigments. Vahur S, Knuutinen U, Leito I. Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug 15; 73(4):764-71. PubMed ID: 19409839 [Abstract] [Full Text] [Related] Page: [Next] [New Search]