These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 21074294

  • 21. Molecular docking and 3D-QSAR studies of 2-substituted 1-indanone derivatives as acetylcholinesterase inhibitors.
    Shen LL, Liu GX, Tang Y.
    Acta Pharmacol Sin; 2007 Dec; 28(12):2053-63. PubMed ID: 18031622
    [Abstract] [Full Text] [Related]

  • 22. Automated docking of 82 N-benzylpiperidine derivatives to mouse acetylcholinesterase and comparative molecular field analysis with 'natural' alignment.
    Bernard P, Kireev DB, Chrétien JR, Fortier PL, Coppet L.
    J Comput Aided Mol Des; 1999 Jul; 13(4):355-71. PubMed ID: 10425601
    [Abstract] [Full Text] [Related]

  • 23. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors.
    Sippl W, Contreras JM, Parrot I, Rival YM, Wermuth CG.
    J Comput Aided Mol Des; 2001 May; 15(5):395-410. PubMed ID: 11394735
    [Abstract] [Full Text] [Related]

  • 24. Combined 3D-QSAR modeling and molecular docking study on 1,4-dihydroindeno[1,2-c]pyrazoles as VEGFR-2 kinase inhibitors.
    Zeng H, Zhang H.
    J Mol Graph Model; 2010 Aug 24; 29(1):54-71. PubMed ID: 20471293
    [Abstract] [Full Text] [Related]

  • 25. 3D-QSAR analysis of a new type of acetylcholinesterase inhibitors.
    Liu A, Guang H, Zhu L, Du G, Lee SM, Wang Y.
    Sci China C Life Sci; 2007 Dec 24; 50(6):726-30. PubMed ID: 17914643
    [Abstract] [Full Text] [Related]

  • 26. A docking score function for estimating ligand-protein interactions: application to acetylcholinesterase inhibition.
    Guo J, Hurley MM, Wright JB, Lushington GH.
    J Med Chem; 2004 Oct 21; 47(22):5492-500. PubMed ID: 15481986
    [Abstract] [Full Text] [Related]

  • 27. Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening.
    Valasani KR, Chaney MO, Day VW, Shidu Yan S.
    J Chem Inf Model; 2013 Aug 26; 53(8):2033-46. PubMed ID: 23777291
    [Abstract] [Full Text] [Related]

  • 28. 2D & 3D-QSAR Study on Novel Piperidine and Piperazine Derivatives as Acetylcholinesterase Enzyme Inhibitors.
    Nazari M, Tabatabai SA, Rezaee E.
    Curr Comput Aided Drug Des; 2018 Aug 26; 14(4):391-397. PubMed ID: 30047333
    [Abstract] [Full Text] [Related]

  • 29. QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase.
    Cardozo MG, Iimura Y, Sugimoto H, Yamanishi Y, Hopfinger AJ.
    J Med Chem; 1992 Feb 07; 35(3):584-9. PubMed ID: 1738151
    [Abstract] [Full Text] [Related]

  • 30. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R, Lin X, Zhang J, Chol KS, Huang W, Yang B, He Q, Hu Y.
    Bioorg Med Chem; 2009 Sep 15; 17(18):6692-8. PubMed ID: 19692250
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Validation of protein-based alignment in 3D quantitative structure-activity relationships with CoMFA models.
    Golbraikh A, Bernard P, Chrétien JR.
    Eur J Med Chem; 2000 Jan 15; 35(1):123-36. PubMed ID: 10733609
    [Abstract] [Full Text] [Related]

  • 33. Acetylcholinesterase complexed with bivalent ligands related to huperzine a: experimental evidence for species-dependent protein-ligand complementarity.
    Wong DM, Greenblatt HM, Dvir H, Carlier PR, Han YF, Pang YP, Silman I, Sussman JL.
    J Am Chem Soc; 2003 Jan 15; 125(2):363-73. PubMed ID: 12517147
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Tacrine-based dual binding site acetylcholinesterase inhibitors as potential disease-modifying anti-Alzheimer drug candidates.
    Camps P, Formosa X, Galdeano C, Gómez T, Muñoz-Torrero D, Ramírez L, Viayna E, Gómez E, Isambert N, Lavilla R, Badia A, Clos MV, Bartolini M, Mancini F, Andrisano V, Bidon-Chanal A, Huertas O, Dafni T, Luque FJ.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):411-5. PubMed ID: 20167211
    [Abstract] [Full Text] [Related]

  • 37. 4-Aryl-4-oxo-N-phenyl-2-aminylbutyramides as acetyl- and butyrylcholinesterase inhibitors. Preparation, anticholinesterase activity, docking study, and 3D structure-activity relationship based on molecular interaction fields.
    Vitorović-Todorović MD, Juranić IO, Mandić LM, Drakulić BJ.
    Bioorg Med Chem; 2010 Feb 06; 18(3):1181-93. PubMed ID: 20061157
    [Abstract] [Full Text] [Related]

  • 38. 3D-QSAR studies of azaoxoisoaporphine, oxoaporphine, and oxoisoaporphine derivatives as anti-AChE and anti-AD agents by the CoMFA method.
    Li YP, Weng X, Ning FX, Ou JB, Hou JQ, Luo HB, Li D, Huang ZS, Huang SL, Gu LQ.
    J Mol Graph Model; 2013 Apr 06; 41():61-7. PubMed ID: 23500628
    [Abstract] [Full Text] [Related]

  • 39. QSAR analysis of acetylcholinesterase inhibitors by use of structure similarity methods.
    Jerman-Blazic B, Fabic-Petrac I, Pecar S, Stalc A.
    Prog Clin Biol Res; 1989 Apr 06; 291():213-6. PubMed ID: 2726849
    [Abstract] [Full Text] [Related]

  • 40. Targeting Alzheimer's disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil.
    van Greunen DG, Cordier W, Nell M, van der Westhuyzen C, Steenkamp V, Panayides JL, Riley DL.
    Eur J Med Chem; 2017 Feb 15; 127():671-690. PubMed ID: 27823887
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.